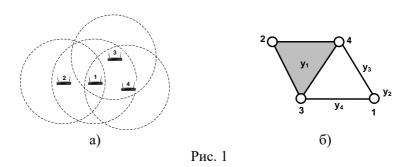
С.В. Гаркуша

СИМПЛИЦИАЛЬНАЯ МОДЕЛЬ ОЦЕНКИ СТРУКТУРНОЙ СВЯЗНОСТИ MESH-СЕТИ

Аннотация

Предложен подход к оценке структурной связности mesh-сетей, представленных в виде симплициальных моделей, основанный на использовании возможностей математического аппарата *q*-анализа. Структура mesh-сети в зависимости от количества mesh-станций находящихся в зоне прямой видимости одной mesh-станции описывалась одномерными, многомерными симплексами и симплициальными комплексами

Симплициальное представление структуры mesh-сети


При моделировании структуры mesh-сети с использованием возможностей комбинаторной топологии, каждая станция mesh-сети представляется в виде некоторого многомерного объекта — симплекса, размерность которого определяется числом mesh-станций сети, которые находятся в зоне ее прямой видимости.

<u>Определение 1:</u> n-мерным симплексом с вершинами $x_1, x_2, ..., x_{n+1} \subset R^n$ называется множество n-мерного эвклидова пространства R^n , задаваемое соотношением [1,3]

$$y = \left\{ x \middle| x = \sum_{i=1}^{n+1} \alpha_i x_i, \sum_{i=1}^n \alpha_i = 1 \right\} \subset \mathbb{R}^n . \tag{1}$$

Поскольку mesh-сеть состоит из нескольких mesh-станций, то, каждой mesh-станиии соответствие соответствующей размерности, получим представление mesh-сети в многомерного геометрического объекта, представленного набором взаимосвязанных симплексов И K_{s} , где индекс S – определяет симплициальным комплексом размерность симплициального комплекса и соответствует наибольшей размерности, входящего него симплекса. Симплициальное В представление mesh-сети, заданной множеством mesh-станций, дает возможность изучать ее структуру с использованием методов комбинаторной топологии. В качестве примера, приведем mesh-сеть, представленную на рис.1 а), которой соответствует 2-мерный симплициальный комплекс K_2 (рис.1 б).

Симплициальный комплекс на рис.1 имеет один нульмерный симплекс y_2 , два одномерных симплекса y_3 и y_4 , а также один двумерный симплекс y_1 , который и определяет размерность симплициального комплекса K_2 .

Показатели структурной связности

Симплициальное представление структуры mesh-сети, с использованием элементов комбинаторной топологии, позволило ввести понятие многомерной связности или q-связности mesh-станций входящих в ее состав, в основу которого был положен математический аппарат q-анализа.

Определение 2: два симплекса σ_i и σ_j комплекса K_S являются q-связными, если существует последовательность симплексов $\sigma_{\alpha_i}^{\ \ n}$ в K_S , такая, что $\sigma_{\alpha_i} \subset \sigma_i$, т.е. σ_{α_i} является гранью симплекса σ_i , σ_{α_n} является гранью симплекса σ_j , σ_{α_i} и $\sigma_{\alpha_{i+1}}$ обладают гранью размерности p для i, где $i=\overline{1,n-1}$ и $q=\min i, p_1, p_2, \ldots, p_n, j$. Нижний индекс симплекса соответствует его геометрической размерности, т.е. $\dim \sigma_S = S$ [2,4].

Задача изучения глобальной структуры связности комплекса K_{S} сводится к рассмотрению классов q-эквивалентности, в результате решения которой для каждого значения размерности $q=0,1,\ldots,S$ можно определить число различных классов эквивалентности.

Процесс выполнения такой задачи носит название q-анализа. Основным результатом q-анализа, определяющим характеристику связности, является первый структурный вектор [2,4]

$$Q = Q_S, ..., Q_1, Q_0.$$
 (2)

Из определения 2 следует, что если два симплекса q-связны, то они также $q-1,\ q-2,\ldots,0$ -связны в комплексе K_s .

В результате этого первый структурный вектор комплекса K_2 , представленного на рис.1 б), будет равен $Q_{K_2}=1,3,1$.

С точки зрения mesh-сети, представленной на рис.1 а), первый структурный вектор Q_{K_2} позволяет говорить о том, что все mesh-станции связны между собой на нульмерном уровне. Другими словами в зоне покрытия каждой mesh-станции находится хотя бы одна mesh-станция, которая также находится в зоне покрытия другой mesh-станции. Например, mesh-станция 3 находится в зоне покрытия mesh-станций 3 и 4. В случае одномерной связи mesh-сеть распадается на три подсети, которые не могут быть связаны между собой с использованием двух mesh-станций. И соответственно в случае двумерной связи в состав комплекса входит только одна mesh-станция 1 образующая двумерный симплекс.

Первый структурный вектор (2), получаемый в результате q-анализа mesh-сети, носит количественный характер связности, т.к. он не позволяет учесть количество mesh-станций в той или ной подсети, в случае распада mesh-сети на подсети. С целью учета самих структур mesh-станций может понадобиться качественный характер их связности. В результате этого q-анализ целесообразно дополнить характеристикой связности называемой расширенным структурным вектором

$$D = d^{S}, ..., d^{q}, ..., d^{1}, d^{0},$$
 (3)

где $d^q = \left\langle l_1^q, l_2^q, \ldots, l_j^q, \ldots, l_{Q_q}^q \right\rangle$ - групповой структурный вектор, отражающий состав q-связных групп симплексов, размерности Q_q , а l_j - количество симплексов, входящих в состав j-ой группы симплексов. В результате вышесказанного можно сделать вывод, что

первый структурный вектор (2) определяет для расширенного структурного вектора (3) его размерность, путем задания размерности его компонент. Для комплекса K_2 , представленного на рис.1 б), расширенный структурный вектор имеет вид $D = \langle 1 \rangle, \langle 1, 1, 1 \rangle, \langle 4 \rangle$.

С целью определения отношения каждой mesh-станции к той или иной подсети, при различной связности, расширенный структурный вектор комплекса K_2 может быть представлен в виде

$$D = \begin{cases} q = 2; \{y_1\} \\ q = 1; \{y_1\}, \{y_3\}, \{y_4\} \\ q = 0; \{y_1, y_2, y_3, y_4\} \end{cases}$$

Расширенный структурный вектор показывает, что при 0-мерной связи mesh-сеть состоит из одной подсети, в состав которой входит четыре mesh-станции. При 1-мерной связи комплекс mesh-сеть распадается на три подсети, каждая из которых состоит из одной mesh-станции. В случае 2-мерной связи mesh-сеть состоит из одной подсети, в состав которой входит только одна mesh-станция.

Литература

- 1. Касти Дж. Большие системы. Связность, сложность и катастрофы: Пер. с англ. М.: Мир, 1982. 216 с.
- 2. Понтрягин А.С. Основы комбинаторной топологии. М.: Наука. Гл. ред. физ.-мат. лит. 1986. –120 с.
- 3. Лемешко А.В. Оценивание структурного разнообразия телекоммуника-ционных систем, представленных симплициальными моделями, по информационным показателям // Праці УНДІРТ. Випуск №2 (38). Одеса: Видання УНДІРТ, 2004. С. 77-79.
- 4. Поповский В.В., Лемешко А.В., Евсеева О.Ю. Симплициальная модель оценки структурной сложности телекоммуникационных систем // Восточно-Европейский журнал передовых технологий. 2003. Вып 5 (5). С. 48-51.