УДК 519.8

КРАТЧАЙШИЙ k -ВЕРШИННЫЙ ПУТЬ В ОРИЕНТИРОВАННОМ ГРАФЕ

П. И. Стецюк, д.ф.-м.н.,с.н.с.

Институт кибернетики им. В.М. Глушкова НАН Украины stetsyukp@gmail.com

Э. С. Долинский, аспирант

Ужгородский национальный университет dolynskiy.eduard@gmail.com

В статье предложена формулировка задачи смешанного булева линейного программирования для кратчайшего пути, который проходит через заданное количество вершин орграфа.

Stetsyuk P. I., Dolynskyi E. S. The shortest k-node path in a directed graph. In the article a formulation of the mixed Boolean linear programming problem for the shortest path, which passes through a given number of nodes of the digraph, is proposed.

Ключевые слова: ОРГРАФ, КРАТЧАЙШИЙ ПУТЬ, БУЛЕВА ПЕРЕМЕННАЯ, ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ.

Keywords: DIGRAPH, SHORTEST PATH, BOOLEAN VARIABLE, LINEAR PROGRAMMING.

Введение. Пусть $D_{n,n}$ – полный орграф, где n – количество вершин, а $d_{ij}>0$ – длина дуги, направленной от вершины i к вершине j, $i\neq j$. Задано k – целое число, такое что $2\leq k\leq n$. Обозначим (i_1,\ldots,i_k) последовательность вершин в связном k -вершинном пути, где i_1,\ldots,i_k – идущие по порядку вершины орграфа $D_{n,n}$. Он содержит (k-1) дуг, последовательно соединяющих вершины i_1,\ldots,i_k . Связный k -вершинный путь, которому соответствует наименьшая суммарная длина входящих в него (k-1) дуг, будем называть кратчайшим

k -вершинным путем, а его длину обозначим d_k^* . Кратчайший n -вершинный путь (ему отвечает k=n) является кратчайшим гамильтоновым путем в орграфе $D_{n,n}$.

В статье [1] рассмотрена задача смешанного линейного программирования для нахождения кратчайшего к -вершинного пути с зафиксированными начальной вершиной i_1 и конечной вершиной i_k . Если начальная и конечная являются неизвестными. кратчайший вершины то k -вершинный ПУТЬ онжом найти c помошью смешанного булева линейного программирования из статьи [2]. Для этого достаточно либо положить все расстояния d_{ai} и d_{ib} равными нулю, либо убрать вклад в целевую функцию от тех дуг, которые связывают вершины а и b с вершинами орграфа $D_{n,n}$. В статье упростим задачу смешанного булева линейного программирования из [2] для нахождения кратчайшего k -вершинного пути, если начальная и конечная вершины являются неизвестными.

Идея и переменные задачи. Будем рассматривать орграф D', как на рисунке 1. Он включает орграф $D_{n,n}$ и вершину a, которая связана направленными дугами (a,i) и (i,a) с каждой вершиной i из множества вершин орграфа $D_{n,n}$.

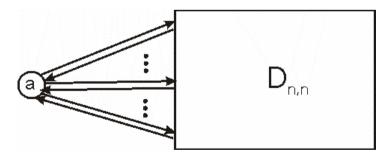


Рисунок 1 – Орграф D^{\prime} , включающий орграф $D_{\scriptscriptstyle n,n}$ и вершину a

Если длины всех дуг (a,i) и (i,a) положить равными нулю, то нахождение кратчайшего k -вершинного пути в орграфе $D_{n,n}$

Computer Sciences and System Sciences (CS&SS-2016)

равносильно нахождению в орграфе D' кратчайшего цикла, который начинается и заканчивается в вершине a и проходит через k вершин орграфа $D_{n,n}$. Пусть найден кратчайший цикл для орграфа D'. Тогда дуга этого цикла, исходящая из вершины a, определяет начальную вершину, а дуга, входящая в вершину a, определяет конечную вершину для кратчайшего k-вершинного пути в орграфе $D_{n,n}$.

Ниже рассмотрим формулировку задачи целочисленного линейного программирования для нахождения кратчайшего k -вершинного цикла в орграфе D'. Он проходит через вершину и через k неизвестных вершин орграфа $D_{n,n}$. Чтобы обеспечить связность пути, т.е. избежать подциклов в орграфе D', используется идея моделирования задачи о потоке, аналогично тому, как это сделано в работе [1]. Задача целочисленного линейного программирования будет справедлива для неполного орграфа, если дополнить отсутствующими дугами и значения длин для них установить равными сумме длин всех дуг неполного орграфа.

Для переменных задачи будем использовать следующие обозначения. Пусть x_{ii} – булева переменная, которая равна единице, если в цикл входит дуга, которая начинается в вершине i и заканчивается в вершине j, и равна нулю в противном случае. Обозначим x_{ai} и x_{ia} – булевы переменные такого же типа как x_{ij} , но для дуг из вершины a в вершину i и из вершины i в вершину a. Количество переменных x_{ai} , x_{ia} и x_{ii} равно n+n+n(n-1)=n(n+1). Пусть y_i – булева переменная, которая равна единице, если цикл проходит через вершину i, и равна нулю в противоположном случае. Количество таких переменных равно n. Пусть неотрицательная переменная z_{ii} задает величину потока некоторого продукта от вершины i к вершине j, а неотрицательная переменная z_{ij} задает величину потока от вершины а к вершине і. Количество этих переменных равно $n + n(n-1) = n^2$.

$$d_k^* = \min_{y_i, x_{ij}, z_{ij}} \left\{ \sum_{i=1}^n \sum_{j=1, j \neq i}^n d_{ij} x_{ij} \right\}$$
 (1)

при ограничениях

$$\sum_{i=1}^{n} x_{ai} = 1, \quad \sum_{i=1}^{n} x_{ia} = 1,$$
 (2)

$$x_{ai} + \sum_{j=1, j \neq i}^{n} x_{ji} = y_i, \quad \sum_{j=1, j \neq i}^{n} x_{ij} + x_{ia} = y_i, \quad i = 1, ..., n,$$
 (3)

$$\sum_{i=1}^{n} y_i = k , \qquad (4)$$

$$z_{ai} - kx_{ai} \le 0, \quad i = 1, ..., n,$$
 (5)

$$\sum_{i=1}^{n} z_{ai} = k , \qquad (6)$$

$$z_{ij} - (k-1)x_{ij} \le 0, \quad i, j = 1, ..., n, \quad i \ne j,$$
 (7)

$$z_{ai} + \sum_{j=1, j \neq i}^{n} z_{ji} - \sum_{j=1, j \neq i}^{n} z_{ij} = y_{i}, \quad i = 1, \dots, n,$$
 (8)

$$y_i = 0 \lor 1, \quad i = 1, ..., n,$$
 (9)

$$x_{ai} = 0 \lor 1, x_{ia} = 0 \lor 1, i = 1,...,n, x_{ii} = 0 \lor 1, i, j = 1,...,n, i \ne j,$$
 (10)

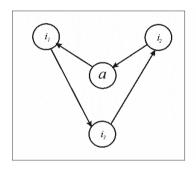
$$z_{ai} \ge 0$$
, $i = 1,...,n$, $z_{ii} \ge 0$, $i, j = 1,...,n$, $i \ne j$. (11)

Задача (1)—(11) является задачей смешанного булева линейного программирования. Она содержит 2n(n+1) переменных, из которых n^2+2n являются булевыми, а n^2 — неотрицательными, и n^2+3n+4 ограничений, из которых 3n+4 — линейные равенства, а n^2 — линейные неравенства.

Теорема. Если k — целое число, удовлетворяющее неравенствам $2 \le k \le n$, то для орграфа D' ограничения (2)—(11) описывают все возможные циклы, которые проходят через вершину a и через k вершин орграфа $D_{n,n}$.

Доказательство. Ограничение (4) задает в точности k вершин орграфа $D_{n,n}$, через которые должен проходить цикл из вершины a. Этим вершинам соответствуют значения $y_i=1$ и для них ограничения (3) описывают однократный вход в вершину и однократный выход из вершины. Ограничения (2) описывают однократный выход из вершины a и однократный вход в вершину a.

Однако ограничения (2)–(4) в сочетании с булевыми ограничениями (8) и (9) не обеспечивают связности искомого цикла. На рисунке 2 для k=3 приведены два допустимые решения, удовлетворяющие этим ограничениям. Левое из них является связным циклом, проходящим через вершины i_1,i_2,i_3 , а правое – состоит из двух несвязных подциклов a,i_1 и i_2,i_3 .



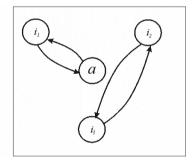


Рисунок 2 – Связный цикл (слева), несвязные подциклы (справа)

Чтобы избежать подобных ситуаций и обеспечить связность искомого цикла используется набор ограничений (5)–(8), (11). Здесь ограничения (5) гарантируют перевозку продукта между вершинами a и i только тогда, если $x_{ai}=1$, а ограничения (7) гарантируют перевозку продукта между вершинами i и j только тогда, если $x_{ij}=1$. Ограничения (6) и (8) означают, что из вершины a нужно развезти k единиц продукта, оставляя в каждой из тех вершин орграфа $D_{n,n}$, через которые проходит искомый цикл, ровно единицу продукта. Доказательство завершено.

Computer Sciences and System Sciences (CS&SS-2016)

Минимизация целевой функции в (1) отвечает нахождению кратчайшего (минимального по длине) цикла из вершины a, который проходит через k вершин орграфа $D_{n,n}$. При этом d_k^* соответствует длине этого цикла, что равносильно длине кратчайшего k-вершинного пути в орграфе $D_{n,n}$. Но сам кратчайший путь может быть неединственным, и если это так, то решение задачи (1)–(11) обеспечивает только один из возможных кратчайших k-вершинных путей в орграфе $D_{n,n}$.

Кратчайший гамильтонов путь. Если k=n, то тогда из ограничения (4) все булевы переменные y_i равны единице, т.е. n-вершинный путь совпадает с гамильтоновым путем в орграфе $D_{n,n}$. Нахождению кратчайшего гамильтонова пути отвечает задача смешанного булева линейного программирования: найти

$$d_k^* = \min_{y_i, x_{ij}, z_{ij}} \left\{ \sum_{i=1}^n \sum_{j=1, j \neq i}^n d_{ij} x_{ij} \right\}$$
 (12)

при ограничениях

$$\sum_{i=1}^{n} x_{ai} = 1, \quad \sum_{i=1}^{n} x_{ia} = 1, \tag{13}$$

$$x_{ai} + \sum_{j=1, j \neq i}^{n} x_{ji} = 1, \quad \sum_{j=1, j \neq i}^{n} x_{ij} + x_{ia} = 1, \quad i = 1, ..., n,$$
 (14)

$$z_{ai} - nx_{ai} \le 0, \quad i = 1, ..., n$$
 (15)

$$\sum_{i=1}^{n} z_{ai} = n , (16)$$

$$z_{ii} - (n-1)x_{ii} \le 0, \quad i, j = 1, ..., n, \quad i \ne j,$$
 (17)

$$z_{ai} + \sum_{j=1, j \neq i}^{n} z_{ji} - \sum_{j=1, j \neq i}^{n} z_{ij} = 1, \quad i = 1, ..., n,$$
 (18)

$$x_{ai} = 0 \lor 1, x_{ia} = 0 \lor 1, i = 1,...,n, x_{ii} = 0 \lor 1, i, j = 1,...,n, i \ne j,$$
 (19)

$$z_{ai} \ge 0$$
, $i = 1,...,n$, $z_{ij} \ge 0$, $i, j = 1,...,n$, $i \ne j$. (20)

Задача нахождения кратчайшего k-вершинного пути более сложная, чем задача нахождения кратчайшего гамильтонова

пути. Это объясняется тем, что нужно определить такое подмножество k вершин, для которого ищется гамильтонов подцикл. Это подтверждают результаты вычислительных экспериментов с помощью программы **gurobi 5.5.0** [3].

Заключение. Для нахождения кратчайшего пути, который проходит через заданное количество вершин полного орграфа в статье предложена формулировка задачи смешанного булева линейного программирования. Она справедлива для неполного орграфа, если его дополнить отсутствующими дугами и для них значения длин установить равными сумме длин дуг неполного орграфа. Если путь должен проходить через все вершины орграфа, то решение построенной задачи определяет кратчайший гамильтонов путь в ориентированном графе.

Для небольших орграфов предложенную модель можно использовать при выборе оптимальных маршрутов в режиме реального времени. Так, например, для нахождения кратчайшего маршрута, который проходит через 20 вершин в 30-вершинном орграфе потребовалось несколько секунд работы программы **gurobi**.

Работа выполнена при поддержке проектов НАН Украины (№ 0114U001055) и МОН Украины (№ 0115U001906)

Литература

- 1.Стецюк П.И. Формулировки задач для кратчайшего k-вершинного пути и кратчайшего k-вершинного цикла в полном графе // Кибернетика и системный анализ. -2015. -№ 1. -C. 78-82.
- 2.Стецюк П.И. Кратчайший к-вершинный путь / П.И. Стецюк, А.В. Лефтеров, А.И. Федосеев Компьютерная математика. К.: Ин-т кибернетики им. В.М.Глушкова НАН Украины. 2015. №2. С. 3–11.
- 3. Gurobi Optimization, Inc., Gurobi Optimizer Reference Manual, 2014, http://www.gurobi.com/