

Українська Федерація Інформатики

Інститут кібернетики імені В. М. Глушкова НАН України

Вищий навчальний заклад Укоопспілки «ПОЛТАВСЬКИЙ УНІВЕРСИТЕТ ЕКОНОМІКИ І ТОРГІВЛІ» (ПУЕТ)

IHФОРМАТИКА ТА CИСТЕМНІ НАУКИ (ICH-2015)

МАТЕРІАЛИ VI ВСЕУКРАЇНСЬКОЇ НАУКОВО-ПРАКТИЧНОЇ КОНФЕРЕНЦІЇ ЗА МІЖНАРОДНОЮ УЧАСТЮ

(м. Полтава, 19-21 березня 2015 року)

За редакцією професора О. О. Ємця

Полтава ПУЕТ 2015

ПРЕОБРАЗОВАНИЕ ЕВКЛИДОВОГО ПРОСТРАНСТВА И ГЛОБАЛЬНАЯ ОПТИМИЗАЦИЯ

А. И. Косолап, д.ф.-м.н., профессор,

Украинский государственный химико-технологический университет, anivkos@ua.fm

Метод точной квадратичной регуляризации (EQR) преобразует общую задачу глобальной оптимизации к максимизации квадрата нормы вектора на выпуклом множестве (MNCC) [1]. Решение задачи MNCC однозначно определяет точку глобального экстремума исходной многоэкстремальной задачи. В работе рассматриваются преобразования пространства, после которых задача MNCC становится одноэкстремальной, тогда ее решение может быть найдено эффективным прямо-двойственным методом внутренней точки [2].

Если выпуклое множество S задачи MNCC является прямоугольным параллелепипедом, то эта задача многоэкстремальная, но ее решение сводится к выпуклой задаче максимизации линейной функции на параллелепипеде [1]. Линейная функция однозначно определяется центром параллелепипеда. Покажем, что задача MNCC сводится к максимизации линейной функции и для более сложной структуры выпуклого множества S.

Рассмотрим задачу

$$\max\{\|x\|^2|x\in S\subseteq E_{\perp}^n\},\tag{1}$$

где S – выпуклое множество, а x – искомый n-мерный вектор.

Теорема 1. Пусть $S \subseteq B = \{x \mid \mid x - c \mid \mid^2 \le r^2\}$ и x^* – решение задачи (1), тогда x^* также решение выпуклой задачи

$$\max\{c^T x \mid x \in S\},\$$

$$ecnu \| x^* - c \|^2 = r^2.$$

Теоремой 1 легко воспользоваться для центрально симметричных множеств S, но, в общем случае, построение описанного шара B для S является сложной проблемой.

Ниже рассматривается преобразование евклидового про-

странства E^n , при котором задача MNCC становится одноэкстремальной. Покажем это на простом примере

$$\max\{\|x\|^2 | 2x_1 + x_2 \le 1, x \ge 0\}.$$
 (2)

В этой задаче два локальных максимума (0,5; 0) и (0; 1), где (0; 1) — точка глобального максимума. Используем линейное преобразование z=x+1, тогда задача (2) примет вид

$$\max\{\|z-1\|^2|2(z_1-1)+(z_2-1)\leq 1, z\geq 1\}.$$
 (3)

Методом EQR преобразуем задачу (3) к максимизации квадрата нормы вектора на выпуклом множестве, получим задачу

$$\max\{\|z\|^2 | - \|z - 1\|^2 + 3 + 2\|z\|^2 \le d, \ 2z_1 + z_2 \le 4, z \ge 1\}, \quad (4)$$

где значение d выбираем минимальным из условия $3 \| z \|^2 = d$. Покажем, что задача (4) является одноэкстремальной. Найдем минимум нормы вектора на прямой $2z_1 + z_2 = 4$, он достигается в точке (1,6; 0,8), которая будет недопустимой для задачи (4). Следовательно, вдоль этой прямой норма вектора будет монотонно возрастать от точки (1,6; 0,8) до точки (0; 1) (поэтому точка (0,5; 0) уже не будет точкой локального максимума нормы вектора).

Рассмотрим общий случай, когда выпуклое множество S является многогранником P. Будем использовать линейное преобразование евклидового пространства z=x+h. Обозначим преобразованный многогранник через P^* и вектор e=(1,...,1). Покажем, что существует такое h>0, что преобразованная задача (1) становится одноэкстремальной. Справедливы следующие утверждения.

Лемма 1. Пусть $x^1 + h, x^2 + h - \partial se$ соседние вершины многогранника P^* не принадлежащие гиперплоскости $e^T x = b$, тогда существует такое h > 0, что функция $\|x\|^2$ вдоль ребра $[x^1 + h, x^2 + h]$ будет строго монотонной.

Лемма 2. Пусть $x^1 + h, x^2 + h, x^3 + h$ — три вершины многогранника P^* не лежащие в одной гиперплоскости $e^T x = b$, а $x^1 + h$ — точка глобального максимума $\|x\|^2$ и вдоль отрезка

 $[x^2 + h, x^1 + h]$ $[z^2 + h, z^1 + h]$ функция $||x||^2$ монотонно возрастает, тогда вершина $x^3 + h$ не может быть точкой локального максимума $||x||^2$.

Теорема 2. *Если выполняются условия леммы* 2, то задача (1) будет одноэкстремальной.

При доказательстве используется тот факт, что минимум нормы вектора на смещенном отрезке

$$\{x \mid x = (1 - \alpha)(x^1 + h) + \alpha(x^2 + h), 0 \le \alpha \le 1\}$$

достигается при

$$\alpha = -\frac{(x^1 + h)^T (x^2 - x^1)}{\|x^2 - x^1\|^2}$$

и при увеличении h норма вектора монотонна вдоль отрезка $[x^1 + h, x^2 + h]$.

В том случае, когда одна з граней многогранника P совпадает с гиперплоскостью $e^T x = b$, преобразуем систему координат x = Az, где

$$A = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ a_1 & a_2 & \dots & 1 \end{pmatrix},$$

тогда, при соответствующем выборе a_i , многогранник P не будет содержать граней, совпадающих с $e^T z = q$. Например, задача

$$\max\{\|x\|^2|x_1 - 2x_2 \le 0, -3x_1 + x_2 \le 0.5, x_1 + x_2 \le 1, x \ge 0\}$$

после линейных преобразований $x_1 = z_1, x_2 = 2z_1 + z_2$, y = z + 4 и EQR, становится одноэкстремальной.

Учитывая то, что любое выпуклое множество с любой наперед заданной точностью аппроксимируется многогранником, теорема 2 будет справедлива и для любого выпуклого множества.

Алгоритм решения задачи (1).

Шаг 1. Преобразуем задачу (1) линейным преобразованием z = x + h.

- Шаг 2. Методом EQR преобразуем полученную задачу к максимизации нормы вектора на выпуклом множестве.
- Шаг 3. Решим преобразованную задачу прямо-двойственным методом внутренней точки. Сохраним найденное решение. Если это решение совпадает с ранее сохраненным, то найдено решение задачи (1).
- Шаг 4. Преобразуем задачу (1) линейным преобразованием x = Az и увеличим значение h, перейдем к шагу 1.

Пример. Найти $\max\{\|x\|^2|a^Tx\leq 1, x\geq 0\}$, где $a_1=1,a_i=1,01$;. i=2,...,100 (заметим, что гиперплоскость $a^Tx=1$ близкая к $e^Tx=b$). В этой задаче 100 локальных максимумов. Максимум нормы на гиперплоскости $a^T(z-10)=1,h=10$ достигается в точке (9,911766; 10,01088 ... 10,01088), которая не удовлетворяет условию $z\geq h$. Следовательно, норма вектора монотонна на допустимом множестве преобразованной задачи

$$\max\{\parallel z\parallel^2\mid -\parallel z-10\parallel^2+s+(r-1)\parallel z\parallel^2\leq d, a^T(z-10)=1, z\geq 10\}$$
 и эта задача – одноэкстремальная.

Таким образом, показано, что простым преобразованием евклидового пространства многоэкстремальные задачи преобразуются к одноэкстремальным.

Литература

- 1. Косолап А. И. Методы глобальной оптимизации / А. И. Косолап. Дн-ск.: Наука и образование, 2013. 316 с.
- 2. Nocedal J. Numerical optimization / J. Nocedal, S.J. Wright. Springer, 2006. 685 p.