

Українська Федерація Інформатики

Інститут кібернетики імені В. М. Глушкова НАН України

Вищий навчальний заклад Укоопспілки «ПОЛТАВСЬКИЙ УНІВЕРСИТЕТ ЕКОНОМІКИ І ТОРГІВЛІ» (ПУЕТ)

IHФОРМАТИКА ТА CИСТЕМНІ НАУКИ (ICH-2015)

МАТЕРІАЛИ VI ВСЕУКРАЇНСЬКОЇ НАУКОВО-ПРАКТИЧНОЇ КОНФЕРЕНЦІЇ ЗА МІЖНАРОДНОЮ УЧАСТЮ

(м. Полтава, 19-21 березня 2015 року)

За редакцією професора О. О. Ємця

Полтава ПУЕТ 2015

ОСОБЕННОСТИ РАЗВИТИЯ ГИПОМЕТАБОЛИЗМА В ЭКСТРЕМАЛЬНЫХ УСЛОВИЯХ

И. Л. Бобрякова, к. ф.-м. н., н. с.

Институт кибернетики имени В.М. Глушкова НАН Украины bobriakova@gmail.com

Ю. И. Мастыкаш, м. н. с.

Институт кибернетики имени В.М. Глушкова НАН Украины

Гипометаболические и гипоксические состояния привлекают большое внимание исследователей, так как организм очень часто подвержен действию гипоксических факторов, особенно в условиях высокогорья, а также при больших физических нагрузках или при некоторых тяжелых патологических процессах [1, 2].

Гипоксическая, или экзогенная, гипоксия развивается при снижении парциального давления кислорода во вдыхаемом воздухе. При гипоксической гипоксии уменьшается напряжение кислорода в артериальной крови, насыщение гемоглобина кислородом и общее его содержание в крови. Отрицательное влияние может оказывать и гипокапния, развивающаяся в связи с компенсаторной гипервентиляцией легких. Выраженная гипокапния приводит к ухудшению кровоснабжения мозга и сердца (сужение сосудов), респираторному алкалозу. В связи с этим представляет интерес выяснение энергетических резервов организма и путей их повышения в гипоксических условиях.

В данной работе предложена математическая модель динамики напряжений респираторных газов с учетом гипометаболизма, который развивается в организме человека в экстремальных условиях [3]. На этой математической модели была проведена имитация функциональной самоорганизации физиологической системы дыхания в условиях высокогорья.

Предполагалось, что до экспериментов система массопереноса газов в организме находилась в стационарном состоянии, дыхательная смесь нормоксическая (21% O_2 и 79% N_2). Расчеты были проведены по нормофизиологическим

данным человека весом 75 кг, объемной скоростью потребления кислорода в условиях покоя q=4,3 мл/с, Q=96 мл/с, Hb=0,14 г/мл, BH=0,479 г/мл, D=550 мл, $t_c=4$ с. Для определения исходного состояния системы при имитации произвольной экстремальной ситуации необходимо было сначала провести имитацию условий покоя при нормальных внешних условиях ввиду сложности экспериментального определения начальных величин Q_{t_i} , $p_{1_{t_i}}$ и $p_{2_{t_i}}$. Поэтому из некоторого заданного приближенного исходного состояния системы траектории $p_{1_{t_i}}$ и $p_{2_{t_i}}$ выводились в стационарный режим за время T. Расчеты проводились на протяжении времени T=3000с с шагом моделирования $\Delta \tau = 0,01$.

Давление воздуха на уровне моря во всех пунктах земного шара близко в среднем к одной атмосфере. Поднимаясь вверх от уровня моря, мы заметим, что давление воздуха уменьшается; соответственно убывает его плотность: воздух становится все более и более разреженным, т.е. уменьшается количество кислорода во вдыхаемом объёме. Поэтому для имитации условий высокогорья были взяты известные значения давления воздуха и содержания в нем кислорода на различных высотах [4].

В данной работе проведен компьютерный анализ модели на высотах 1км (Bo=674 мм рт.ст.), 2 км (Bo=596 мм рт.ст.), 3 км (Bo=526 мм рт.ст.), 4 км (Bo=462 мм рт.ст.) с содержанием кислорода в воздухе соответственно 18,5%, 16,2%, 14,3%, 12,6%. При этом в 0-й момент времени брались значения напряжений газов в артериальной крови и скелетных мышцах в норме, т. е. в покое на уровне моря.

На каждой из высот проведена серия экспериментов в следующих условиях:

I. Гипоксия в покое с компенсацией - увеличение Q ск.м в 2 раза, Ved в 1,5 раза: Ved=800 мл; tc=4,0 с; ted.=teыd.=1,5 с; Q=117,1 мл/с; Qмозга=14,88; Qcepd.=6,135; Qск.м.=38,45; Qdp.mκ.=57,595; q=4,44мл/с; qм.=0,632; qcepd.=0,4725; qcк.м.=1,488; qdp.mκ.=1,849.

II. Гипоксия нагрузки с компенсацией - увеличение q ск.м. и Q ск.м в 2 раза, Vвд в 1,5 раза: Vвд=800 мл; tc=4,0 с; tвд=tвыд=1,5с; Q=117,06 мл/с; Qмозга=14,88; Qсерд.=6,135; Qск.м.=38,45; Qдр.mк.=57,595: q=5,9292мл/с2; q м.=0,6321; qсерд.=0,4725; qск.м.=2,9756; qдр.mк.=1,849.

III. Гипоксия нагрузки с компенсацией - увеличение q ск.м. в 2 раза, Q ск.м в 4 раза, Vвд до 1000 мл: Vвд=1000 мл; tс=3,0 с; tвд=tвыд=1,5с; Q=159,22 мл/с; Qмозга=14,88; Qсерд.=9,84; Qск.м.=76,90; Qдр.mк.=57,595; q=6,2146 мл/с; qм.=0,6321; qсерд.=0,7579; qск.м.=2,9756; qдр.mк.=1,8490.

Результаты экспериментов отражены в таблице и на рисунках в работе [5].

Сравнительный анализ результатов показывает, что при одних и тех же значениях величин \dot{V} и Q уровни p_aO_2 ниже нормы, а уровни $p_{c\kappa, m}O_2$, p_aCO_2 , $p_{c\kappa, m}CO_2$ выше, но потом значительно снижаются.

Для того, чтобы уровни напряжений газов приблизились к нормальным значениям величин \dot{V} и $Q_{\text{ск.м.}}$ должны быть значительно выше.

Выводы. Приведенные результаты компьютерного анализа модели свидетельствуют, что гипометаболизм является необходимым условием стабилизации состояния организма при высокогорной гипоксии.

Расчеты на математической модели показывают, что для стабилизации состояния системы дыхания и кровообращения требуется меньше энергетических затрат регуляторных механизмов при работе в условиях высокогорья.

Литература

1.Білошицький П. В., Ключко О. М., Онопчук Ю. М. Вивчення проблем гіпоксії українськими вченими в районі Ельбрусу // Вісн. НАУ. – 2007. - №3-4. – С. 44-50.

- 2.Онопчук Ю. Н., Мисюра А. Г. Методы математического моделирования и управления в теоретических исследованиях и решении прикладных задач спортивной медицины и физиологии // Спортивна медицина. 2008. №1. С. 181-188.
- 3. Биоэкомедицина. Единое информационное пространство / Под ред. В. И. Гриценко. Киев: Наукова думка, 2001. 318 с.
- 4. Таблица международной стандартной атмосферы http://www.vsetabl.ru/154.htm.
- 5.Бобрякова И. Л., Корнюш И. И., Машкина И. В. Исследование процесса гипометаболизма при работе на высокогорье // Компьютерная математика. 2014. №2.