[NOJITABCBKII YHIBEPCUTET EKOHOMIKHU I TOPTIBJII
HapuayibHO-HayKOBUM 1HCTUTYT JICHHOI OCBITH
®opma HaBYaHHS JICHHA

Kadenpa koM roTepHuX HaykK Ta iHGOPMAIIHHUX TEXHOJIOT1H

[onyckaeTbcst 10 3aXUCTY
3aBigyBau kadenpu
Onena OJIbXOBCBKA

(nionuc)

« »_ 202_p.

KBAJI®IKAIIIAHA POBOTA
Ha TeEMy

IHCTPYMEHT JJISI ABTOMATH3AIII TECTYBAHHS TPOJIYKTUBHOCTI
BEB- IOJATKIB Y PO3IMOALIEHMX CEPEJOBHMIIIAX

3i cneniajgbHocTi 122 Komm’roTepHi Hayku
ocBiTHs nporpama «Komm’oTepHi HayKmw»

CTYIeHs Maricrpa

Buxonasens pod6otu bopucenko g Bonogumuposuy
« » 202_p.

(nionuc)

HaykoBuii kepiBHMK 10ULEHT, K.(.-M.H. Yepnenko O. O.
« » 202_p.

(nionuc)

Penenzent

IOJITABA 2025

PEDEPAT

3ammcka: 73 c., 11 puc., 2 tabauii, 1 nogatok, 13 mkepern.

TECTYBAHHSA ITPOAYKTUBHOCTI, NODE.JS, DISTRIBUTED AGENTS

O06’ekTOM pO3pOOKH € THCTPYMEHT JUIsl aBTOMATH3allli TECTYBaHHS MPOAYKTHUBHOCTI
BeO-70/IaTKIB Y PO3MOAUICHUX CEPeIOBHUIIAX.

[IpenmeToM po3poOKH € mporpamMHa peajizallis CHCTeMH, 110 3abe3neuye
CTBOPEHHS CILIEHApiiB HABAHTAXKEHHS, 3allyCK TECTIB Ha KUIBKOX BYy3Jlax Ta aHai3
pe3yNbTaTIB y 3py4HOMY IHTEpdEiici.

MeToro poOOTH € CTBOPEHHS IHCTPYMEHTY, KU 103BOJIsIE aBTOMATU3YBATH MTPOLIEC
HABaHTa)XyBaJIbHOTO TECTYBAaHHS, CIPOCTUTH HAJAIITyBAaHHS CIICHApIiB 1 3a0€3MeYuTH
IHTEPaKTUBHHUI aHaJ13 METPUK MPOAYKTUBHOCTI Y PEaIbHOMY Yaci.

PesynpraTom pobotm cramo po3poOneHHs BeO-cuctemu PerfBench, ska
cknagaetbesi 3 Control Plane (Oekenna), BeO-iHTepdeiicy Ta pO3NOAUIEHUX areHTIB.
[HCTpyMEHT 103BOJIsI€ THYYKO CTBOPIOBATH CIIEHApii TeCTyBaHHs yepe3 popmy abo JSON-
cnernu@ikaiiio, 3aCTOCOBYBaTH TOTOBI IIa0JIOHM HaBaHTaxeHHs (steady, ramp, spike,
stress, flow-cuenapii, traffic mix) Ta 3amyckary iX Ha IEKiJIbKOX areHTCHKHX By3JIaX.

OpHi€lo 3 KITIOYOBUX OCOOJMBOCTEH € pPO3MOJijeHE BUKOHAHHS TECTIB: areHTH
nigkmrovaroTees 10 Control Plane, oTpuMyroTh 3aBJaHHS Ta BUKOHYIOTh HaBaHTaKEHHS,
noBeptatoun bulk-metpuku. Ile nae MoXIuBICTh MacIITa0yBaTH TECTH W MOJAEIIOBATH
poOOTYy COTEHBb a00 TUCSAY OJTHOYACHUX KOPUCTYBAUiB.

VY cuctemi peanizoBaHo 30ip Ta Bizyamizaiio Metpuk: pS0, p95, p99, throughput,
error rate. KopuctyBau Oauuth Tpadikyd 3aTpuMOK, MPOIYCKHOI 3aTHOCTI Ta YaCTKH
MOMUJIOK Y Yaci, a TaKOX ricrorpamy 3anuriB. [lependayeno nepeBipky SLA-moporis, 110
ABTOMATUYHO CUTHAJI3Y€E MPO MOPYILIEHHS YMOB (Hanpukiazg, p95 > 700 mc abo error rate
> 2%). PesynbpTaTl MokHa ekciopTyBaT y hopmat CSV 17151 TO1abIIIOro aHai3y.

Iatepdeiic PerfBench mictuth po3ainu:

o Cruenapii -cTBOpeHHs Ta 30epeKeHHS BJIaCHUX KOH]ITyparriii;
o 3amycKu -KOHTPOJb BUKOHAHHS TE€CTIB, 3yIMIMHKA Ta TIEPETJIsi IeTajei;

o IllaGmonu -Halip roToBUX NpoQ1IiB HABAHTAKEHHS,

+ IlociOHuk -iHTEerpoBaHa JOBIJKa Ta IIBUIKUN CTApT Y 5 KPOKIB.

Jlna mepeBipku poOOTH 1HCTPYMEHTY peaiizoBaHo demo-target, mo imiTye BeO-
cepBic 13 mapamerpamu delay, jitter, fail. Bin mo3Bomnsie 6€3 30BHIIIHIX peCypcCiB
NEePEeBIPATH MOBEIIHKY CUCTEMH 1]l pI3HUMH TUIIAMU HaBAaHTaKECHHS.

PerfBench Oyno mpoTecToBaHO y JOKaJIBHOMY Ta PO3MOAICHOMY CEpEIOBHUIIAX.
PoGoTta miaTBepmkeHa sk cTabiabHA M epEeKTHBHA: CHCTeMa KOPEKTHO 00pOOJIse TeCATKH

TUCSY 3aIHTIB, a IHTEPQEiC 3aUIIA€TbCA IHTYITUBHIM Ta 3pyYHUM JJIsl KOPUCTYBAUiB.

3MICT
2 1O 4 TR PP 7
1. [IOCTAHOBKA BAJTAUL......coiiiiiiiiie e 9
2. THOOPMALIMTHUI OTTISIIL...cooveeeeeeeeeeeeeeeeeee e et eee et en e ee s e en e een s 11
2.1. [ligxoau Ta METOAU TECTYBAHHS TPOTYKTUBHOCTI +evvvvvvvesereeessrenesssnesssssesssssnsssseeens 11
2.2. Metpuku Ta kputepii oriinku (SLA, p95, throughput, error rate)ccccevcvvveiineenne, 12
2.3. OTJSA ICHYFOUHX THCTPYMEHTIB ...vuveeureereessresireasseesieessessseesnsessseasseesseessesssnssssesnseessens 14
2.4. TIopiBHSAIBHUMA QHATI3 1 BUOIP TTIIXOILY +euvvenvreureanreesteesseesseessnessseesseesseesseessnessnesseessess 19
3. TEOPETUYHA UACTHUHA.......coiiiiie et 21
3.1. Apxitektypa iHCTpYMEHTY PerfBench ..., 21
3.2. Mozens TaHUX Ta CTPYKTYPA CHEHAPITB ..veeuveevrrriririieeiiesieesieesinesreesteesieesieessnesneenneas 22
3.3. IIpuHIMI POOOTH PYLIITB HABAHTAMKECHHS ..v.vveenreeasreeesreessneessneesnnessneeensneesnneesnnessnnes 24
4. TIPAKTHUUYHA HACTHHA ..ot 27
4.1, PEAMIBALIIST OCKEHILY +..uuvveeeureieatreeesteeeeasreesssseasasssaesssbeessasseeesasseeessaeesansseesanseessssnseens 27
4.2. Peamizaiisl DPOHTEHLY «....vvveureerureessreesnreesnesasseeaaseeessseessseessnesssessssesesnseessneessneesnessnes 30
4.3. JleMOHCTpALIHA LITb 1 CHEHAPIT 3AITYCKIBvveesrreerereessreessreessseesnesesnneessneesnnesssnessnnes 33
4.4, PO3NOAUICH] QTr€HTHU HA TIPAKTHIIveeeiuereeeintreesautreesssrnessssseessssseeesnsseessnssesssnssessssseeens 38
4.5. [HCTPYKUIS IS KOPHCTYBAUR «..vvvesereesreesnsesasseeasnseessneessnesssnessnsessssesessseessneesnesssessnes 45
BUICHOBK ..ottt ettt neennees 53
CITUCOK THOOPMAIIMHUX JIKEPEIL........coevcviveiieeeieeiesseseesesissssesessesissssensssenenns 55

TIOTTATOK A oo e e e e s s seee s s ee s eese e s e st es s es e ee s eeseees e ee e ee s sses 56

CIIMCOK YMOBHUX TIO3HAYEHHb, CUMBOJIIB, CKOPOYEHD,

TEPMIHIB

VYMOBHI TIO3HAYEHHS, CHMBOJIH,

CKOPOYEHHS, TEPMIHU

[losicHeHHs YMOBHUX IIO3HA4YCHb, CKOPOYCHBb,

CHUMBOJIIB

SLA (Service Level Agreement)

VYroma mpo piBeHb HaJIaHHS TOCITYT, IO BU3HAYAE
OYIKyBaH1 MOKAa3HUKHU MPOAYKTUBHOCTI (3aTpUMKa,

TTOMMJIKH TOIIIO).

p95 95-i1 mepueHTWIb Yacy BIATYKY -TIOKa3HHK, IO
BiloOpaXkae, 3a SKUM Yac BUKOHYETbCS 95%
3aIuTIB.

Throughput [IpommyckHa 37aTHICTH CHUCTEMH, KUIBKICTb
YCHIITHUX 3amuTiB 3a cekyHay (RPS).

Error rate YacTka 3amuriB, 110 3aBEPIIMIIUCS 3 TOMUIKOO (Y

B1JICOTKaX).

RPS (Requests per second)

KinapKicTh 3amuTIB Ha CEKYHY.

Ul (User Interface)

[aTepdeiic kopucryBaya.

API

Interface)

(Application Programming

[Iporpamuuii iHTEepdeiic s B3aeMOAIl MIXK

KOMIIOHCHTaMH CHUCTCMMU.

JSON (JavaScript Object Notation)

@®opMat 0OMIHY TaHMMH, U0 BUKOPUCTOBYETHCS Y

cueHapisx PerfBench.

Agent

Jlerkuii mpolEC-BUKOHABEIb, SKHUH OTPUMYE

3aBganHss 3 Control Plane Ta renepye

HaBaHTa>XCHHAI.

Control Plane

[lenTpanbHuii MOAYJb, IO KEPYE AarcHTaMHU,

cueHapisiMu Ta o0po0JIsie pe3yJabTaTH TECTIB.

Load Testing

Meroa TecTyBaHHsI, 110 BUMIPIOE MPOAYKTHUBHICTD

CHUCTCMH HiI[HaBaHTA>XKCHHAM.

Stress Testing

TecTyBaHHS «Ha MEX1», 10 MOKa3ye, IK CUCTEMA

IMOBOAUTHCA ITPHU CKCTPCMAJIbHOMY HaBaHTAKEHHI.

Spike Profile [Ipodine HaBaHTaKEHHSA 3 PI3KUM CTPUOKOM
KUTBKOCTI 3aITUTIB.
Ramp Profile ITpo(disb MOCTYIIOBOIO 3pOCTaHHS HaBaHTAKCHHSL.

Steady Profile

[Tpodinb craoro HaBaHTaKeHHS 0€3 3MiH y Yaci.

BCTYII

VY CBITI pO3BUTOK BEO-TEXHOJOTIA Ta 3pPOCTaHHS KUIBKOCTI OHJIAMH-CEpPBICIB
BUMAararmTh OCOOJMBOI yBarw J0 MPOAYKTHBHOCTI TMporpamMHmx cucteM. KopucryBadi
OYIKYIOTh CTaOUIBHOTO JIOCTYIYy, MBHIKOIO BIITYKY Ta HaAIHHOCTI pOOOTH BeO-10aTKIB
HE3aJIeKHO BIJ HaBaHTakeHHdI. CaMe TOMY TECTyBaHHS MPOJYKTUBHOCTI CTaJo
HEBIJI'€MHOIO CKJIaJI0BOIO MIPOIECY PO3POOKH Ta BIIPOBAKEHHS MPOTPAMHHX MPOAYKTIB.

TecTyBaHHS TMPOIYKTUBHOCTI JIO3BOJISIE BHSBISTH «BY3bKI MICISD) CHCTEMH,
BHU3HAUaTH 11 CTIMKICTP JO CTPECOBUX HABaHTAKEHb, MPOTHO3YBATH MOBEAIHKY IMpH
3pOCTaHHI KIJILKOCTI KOpHcTyBadiB. [IpoTe BUKOpUCTaHHS ICHYIOUHUX 1HCTPYMEHTIB 4acTo
CYNPOBOJIKYETHCSL CKJIQJHOI0 KOH(Iirypairi€ro, nmotpedoro B J10AATKOBINA 1HGPACTPYKTYpi
a00 BIJICYTHICTIO 3py4YHOI aHAMITHKU. Lle cTBOproe TpyaHOIl JUisi KOMaH PO3POOHUKIB 1
TECTYyBaJIbHUKIB, SIKI MPArHyTh MIBUJKO OTPUMATU JOCTOBIPHI PE3YJIbTATH.

Po3pobka 1HcTpymenty PerfBench chpsiMoBaHa Ha COpOLIEHHS MpoLECY
aBTOMATH3aIlli HABAHTAXKYyBAJILHOTO TecTyBaHHsA. CHcTeMa O€HY€e CTBOPEHHS CIIEHApIiB,
3alycK TecTiB, 30ip Ta Bi3yali3allil0 METPUK y €IUHOMY CepenoBuIll. JogaTKoBOIO
MepeBarol0 € MiITPUMKa PO3MOAUICHUX 3alyCKiB, 110 J03BOJISIE MOCITIOBAaTH pealibHi
YMOBH po0OOTH BEO-710/IaTKIB 3 BEJIMKOIO KIJIbKICTIO KOPUCTYBAUiB.

AKTYaJIBHICTh JIOCTIJDKEHHS TIOJIATa€ y HEOOXITHOCTI CTBOPEHHS 3pPYyYHOro Ta
CaMOJIOCTaTHBOTO 1HCTPYMEHTY, SKMU 3a0e3leuye IIBUAKE HaAJIAIUTyBaHHS CIEHapiiB,
KUBUM MOHITOPUHT pe3yJbTaTiB 1 aBTOMATHUYHY OIHKY BIAMOBIAHOCTI CHUCTEMHU
BU3HaYeHUM SLA-kputepisim.

Mera poboTu -anropuTMmizailisi Ta po3poOKa IHCTPYMEHTY JUIsi aBTOMAaTH3aIlii
TECTyBaHHS MPOJYKTUBHOCTI BEO-I0IATKIB y PO3MOAIICHUX CEPEIOBUIIAX.

3aBaaHHs pOOOTH:

e TMpOaHANI3yBaTH Cy4YacCHI MIJXOIW Ta I1HCTPYMEHTHU JUIsi HABAHTAKYBAJIbHOTO

TECTyBaHHS;

e BHM3HAYUTU BUMOTM [0 IHCTPYMEHTY [UJIi MIATPUMKM aBTOMaTH3alii Ta

PO3MOIIICHHUX 3aITyCKiB;

o po3pobutu apxitektypy cuctemu PerfBench (Control Plane, intepdetic

KOPHUCTYyBaya, areHTH, IEMO-1I1Th);

e peasi3yBaTH OCHOBHI MOJyJi: pyuIii HaBaHTaXeHHs, 30ip meTpuk, SLA-anamis,
3BITHICTB;
e CTBOpUTH iHTep(elic KOpUCTyBaua i 3pYYHOTO OMHCY CIICHApPiiB Ta Meperiisiay
pE3yIbTaTIB;
e TIEPEBIPUTU POOOTY IHCTPYMEHTY Ha EKCIIEPUMEHTAJIBHUX CIICHAPIAX.
OO0’€eKT JOCTiIKEHHS -TIPOIEC HABAaHTAKYBAJIBHOTO TECTYBaHHS BEO-IOJATKIB y
PO3MOUICHUX CEPEIOBUIIAX.
[Ipenmer nocCHiPKEHHS -METOAM aJITOpPUTMI3allli, MPOCKTyBaHHSA Ta peaizalii
MPOrpaMHUX IHCTPYMEHTIB JI1 aBTOMATH3AaIlil TeCTYBaHHS IPOAYKTUBHOCTI.
[IpakTnuHe 3HAYEHHS pPOOOTH TIOJNATA€ y CTBOPEHHI MPOTPAMHOTO TPOIYKTY
PerfBench, skuit wmoxke OyTH BHUKOPUCTaHMA 1HXKEHEpaMH MPOTYKTUBHOCTI,
TeCTyBaJIbHUKAMH Ta KOMaHAaMHU PO3POOKH JUTsl IMIBUAKOT OpraHi3ailii HaBaHTaXyBaJIbHIX

TECTIB, aHAJII3y PE3yJIbTATIB Ta I1IBUIICHHS HAIIHHOCTI BEO-/101aTKIB.

1. HIOCTAHOBKA 3AJTAUI

OCHOBHOIO METOIO JAHOTI'O MPOEKTY € PO3pOoOKa IHCTPYMEHTY JJIs aBTOMAaTH3allli
TECTYBaHHS MPOJYKTUBHOCTI BeO-IOJATKIB y PO3MOAUICHUX CcepeloBUIIax. Takuii
IHCTPYMEHT Ma€ CIIPOCTUTHU IMPOIIEC CTBOPEHHS Ta 3aIlyCKy HABAHTAXKYBaJbHUX CIICHAPIiB,
3a0e31eunTH 301p 1 Bi3yalizallito METPUK Y PEKHUMI peaIbHOTO Yacy, a TaKOX IMiATPUMATH
MOJKJIUBICTh PO3MOALICHOTO BUKOHAHHS ISl MOJEIIOBAaHHS MAacIITaOHHX yMOB poOOTH
CUCTEMH.

OcHOBHI 3aBIaHHS:

1. Awnani3 npeamMeTHOi 00acTi:
o JOCHIIUTU Cy4yacHI METOAM Ta MIAXOAU JO TECTYBaHHS MPOTYKTUBHOCTI;
o BH3HAUMTH KIF040oBi MeTpukH (latency, throughput, error rate, SLA-moporu).
2. IlpoexTyBaHHS apXiTEeKTypH CUCTEMHU:
o po3pobutu cTpykTypy iHCTpyMeHty 3 Control Plane, BeG-iHTepdeiicom,
JEMO-IIIJITIO Ta OMIIMHUMHA arcHTaMU;
o BHU3HAYUTH MOJIEIb JAHUX JUIS CIICHAPIiB, 3aITyCKIB Ta METPHK.
3. Po3poOka crienapiiB HaBaHTaKEHHS:
o 3abe3neunTH mMaATpuUMKY steady, ramp ta spike mpodinis;
o peanizyBatu flow-ciieHapii 3 KpokaMu Ta €KCTPaKIII€l0 3MIHHUX;
o J0JAaTh MOXJIMBICTH onucy traffic mix ansg pi3HUX MapHIpyTiB.
4. Peamizalis pyuiiiB HaBaHTaXEHHS:
o CTBOPUTH BOYJOBaHUI reHepaTop 3anuTiB (native engine);
o 3abe3ne4yuTH IHTerpamito 3 k6 Sk 101aTKOBUM PyLIIEM.
5. Pospobka inTepdericy kopuctyBaya:
o crBoputd Ul mnga gopMyBaHHS clieHapiiB, 3allyCKy TECTIB Ta HEperjsiay
pE3yIIbTaTIB;
o 3a0e3meunTH BiOOPaKEHHS JKUBUX METPHUK Ta MIJCYyMKOBUX 3BITIB.
6. Peanizaiiist po3noAiieHUX 3aIyCKiB:
o po3pobutu mpoTokon B3aemonii areHTiB 3 Control Plane (peectpariis,

heartbeat, claim, complete);

10

o peaizyBaTH MEXaHI3M IIapIIHTy HAaBaHTAXCHHSI MK ar€HTaMHu.
/. AHamniTHKa Ta 3BITHICTH:
o 3abe3neunTH hopmMyBaHHSI summary 3 p50/p95/p99, throughput ta error rate;
o peami3zyBaTu ekcropT pe3yibTaTiB y CSV ta HTML;
o JojaTu baseline-mopiBHSHHS 3aITyCKiB.
8. JloxymeHTallisi Ta I€MOHCTpAIIis:
o CTBOPHUTH CYIIPOBIIHY JOKYMEHTAIIIIO JIJIsi KOPUCTYBAYiB,
o MATOTYBaTH JeMOHCTpauiiHi creHapii (steady, spiketjitter, flow, traffic
mix).

['onoBHMMH BHMOTramMu J0 IHCTPYMEHTY € CTaOUIbHICTh pPOOOTH, 3PYUHICTH
BUKOPUCTAHHSA, MIATPUMKA THYYKOTO OIKCY CIIEHAPIiB Ta MOXKJIMBICTh MacIITA0yBaHHS Y
po3noauieHux cepenoBumax. PerfBench mae 3a0e3neunty iHXKeHepaM IPOTYKTUBHOCTI
IIBUJKE HaJAlITYyBaHHS TECTIB, MPO30puil 30ip MeTpuk Ta e(GEeKTUBHUN aHali3

pE3yNbTATIB.

11

2. THOOPMAIIMHUN OI'JISII
2.1. Ilinxoau Ta MeTOAH TeCTYBAHHS NMPOAYKTUBHOCTI

TecTyBaHHS IPOAYKTUBHOCTI 3aiiMa€e 0COOJIMBE MICIIE CEPET METO 1B 3a0e3eUeHHS
SIKOCTI MpOrpamMHOTO 3a0e3nedeHHs. SKimo (GyHKIIOHAIBHI TECTH Jal0Th BIANOBIAL Ha
3aMUTaHHS «Yd TPABWIBHO TIPAIlO€ CHUCTEMa», TO HaBaHTa)XXYBaJbHI TMEPEBIPKU
J03BOJISIIOTH 3’ACYBAaTH «SK CaM€ BOHA MPAIIO€ y PEAIbHUX YMOBAaX, KOJM KOPUCTYBayiB
0araTo 1 iXHs aKTUBHICTh HeTIepe10auyBaHay.

OcHOBHA 1iiesl IbOTO THUIy TECTYBAaHHS IOJSTa€ y CTBOPEHHI KOHTPOJIHOBAHOTO
HABAHTAKECHHS Ha CUCTEMY Ta MOJAJIbIIOMY aHami31 il moBeAinku. Hanpukian, sikiio Be6-
J0JTATOK PO3paxOBaHWK Ha POOOTY 3 THUCAYCIO KOPHCTYBAdiB OJHOYACHO, 3aBIaHHSIM
TECTyBaHHA € TepeBipKa TOTrO, Y CHOpaBAl BIH BUTPUMAE TaKy KIJIbKICTh 3’€JIHAHb,
HACKUIBKM IIBUAKO BIAMNOBIJATHME Ha 3alUTH 1 9K 3MIHIOBATUMETHCI SKICTh
00CIIyTOBYBaHHSI MPU MEPEBUIIICHH1 3asBJICHOT MEXI.

VY nmpakTuill BUKOPUCTOBYIOTH KiJbka MiAXoAiB. OJIWH 13 HaWMOMIMPEHINIUX -
HAaBaHTAKYBaJbHE TECTYBAaHHS, KOJM CHCTEMa IEPEBIPAETHCI B YMOBAX, MaKCHMAaJIbHO
HaOMMKEHUX 10 3BUYAlHOI ekcruryaraiii. Hampukmian, iHTepHET-Mara3uH MoOxe OyTu
MPOTECTOBAHUI 3a CIICHApPIEM, JI€ OJJHOYACHO COTHI KOPHUCTYBAUiB MEPETIISAIal0Th TOBAPH,
JOA0Th 1X y KOMIMK 1 0GOpPMIIIOIOTH 3aMOBJIeHHs. Lle 103BOjsi€e BUSIBUTH, HACKIIBKHU
IIBUJIKO CalT 00po0IIsie TUIIOB1 O13HEC-TIPOIIECH.

[HmMit miaxig -cTpec-TeCTyBaHHS, KOJM HAaBAaHTAKEHHS IUTYYHO 30LIBIIYETHCA
J0TH, TIOKM CHCTeMa HE TOYHE MpAIfOBaTH 3 BiIMOBaMH a00 3HAYHOIO JETpajalli€ro.
Takuii MeTon 1ae 3MOTY BU3HAYUTH TPAHUYHI MOKJIMBOCTI MPOTPaAMHOTO 3a0e3MeYeHHs
Ta OI[IHUTHU, HACKIILKK BOHO 3/IaTHE BIJIHOBUTHUCS TICIIS MEpeBaHTaXEHHS. SIK TpUKIIaL
MOYKHA HABECTH CUTYAIlII0 3 OHJAHH-KIHOTEaTPOM, SIKUH Yy JIeHb NpeM’epr (IIbMY 3a3Ha€
PI3KOTO HAIUIMBY TJISAA4iB -CTPEC-TECT JO3BOJISE CIPOTHO3YBATH, YU BIIOPAETHCS
maTdopMa 3 mo1i0OHUM MTIKOBUM HaBaHTAKEHHSIM.

OxpeMy yBary MOpUIISIOTh TaK 3BaHUM «CIIAMK-TECTaM», KOJIH HaBaHTAXCHHS
PI3KO 3pOCTa€ y KOPOTKUM MPOMDKOK yacy. Lle akTyaibHO J171s1 B€0O-101aTKIB, K1 MOXYTb

3a3HATH MUTTEBHUX CTPUOKIB Tpadiky, HAMPHUKIAA, MiJ Yac PO3NPOAAXY B IHTEPHET-

12

Mara3uHi abo B mepiof myOmikaiii pe3oHaHCHOI HOBUHH. SIKIIO cucTeMa He TOTOBa J0
no/Ii0HUX CTPUOKIB, KOPUCTYBaul MOXKYTh CTUKHYTHUCS 3 HEIOCTYIHICTIO CEPBICY HAaBIThH
3a BITHOCHO HEBEJIMKOI 3arajibHO1 KUJIBKOCTI Bi/IBITyBayiB.

[Ile oguH MoOMMpPEHU METOT ~-TECTYBaHHS Ha BUTPHUBATICTh, KOJIA JIOJATOK MPAITIOE
miJ cTaOlIbHUM HaBaHTAXEHHSM YIIPOJOBXK TPUBAJIOro yacy. Takui Miaxid T03BOJISE
BUSIBUTU TIPUXOBaHI TMpOOJIEMH, SKI HE NPOSBIAIOTHCS IIiJI 4YaC KOPOTKUX TECTIB,
HANPUKIJIaJ, BHUTOKM Mam’ATi abo 3pOoCTaHHS 4Yacy BIANOBIAI dYepe3 HAKOMUYECHHS
BHYTPIIITHIX MOMUJIOK. J[J11 OaHKIBCHKUX a00 TEICKOMYHIKAIIMHUX CUCTEM TO0A10H1 TeCTH
MaloTh OCOOJIHMBE 3HAYCHHSI, aJKE CTAOUTBHICTh POOOTH MPOTATOM THXKHIB UM MICSIIB €
KPUTUYHOIO BUMOTOIO.

VYci 3a3HadeHl MiAXOAM 3a3BUuYail BUKOPUCTOBYIOTHCS pPa3oM, ajKe JIMIIE IX
MOETHAHHS J1a€ TIOBHE YSBICHHS IMPO CTaH MPOAYKTHBHOCTI CHUCTEMHU. Y peaTbHUX
MpOEKTaxX croyatky @opMyoTh 0a30Bl MOKAa3HUKH, SIKI BUCTYMAIOTh OPIEHTHPOM
(baseline), a moTtiM MOPIBHIOKOTH X 13 pe3yJbTaTaMH IICJIS BHECCHHS 3MIH y KOJ YH
iHppacTpykTypy. Hanmpukian, ko HoBa Bepcisi Be0-10/1aTKy MTOKa3ye 3HAYHE 3pOCTaHHS
Jacy BIJIIIOB1/Il HA TOMY K HaBaHTaXXEHHI, 11¢ CUTHAJI 0 HEOOX1THOCTI ONTHUMI3aIlii.

TakuM YMHOM, METOAU TECTYBAHHS MPOAYKTHBHOCTI 3a0€3M€UyI0Th PO3POOHHUKIB 1
Oi3HeC-aHAMITUKIB JTAHUMH [JIl TPUUHSTTS pIlIEHb MO0 MAacIITa0yBaHHS CUCTEMH,
onTUMi3allii KOy Ta MiJIBUIIECHHS HAJIIWHOCTI cepBiciB. be3 HUX CKJIaJHO TrapaHTyBaTH,
0 BEO-10AaTOK 3aJIUIIATUMEThCS CTAaOUTbHUM Yy KPUTHUYHI MOMEHTH, KOJIM BIiJl IIbOTO

3aJIeKUTH JOBIpa KOPUCTYBaviB Ta ()IHAHCOBUN PE3YNIHTAT KOMIAHII.

2.2. MeTpuku Ta kpurtepii ouinku (SLA, p95, throughput, error rate)

EdexTuBHicTh Oyab-SKOTO HABAaHTAXKYBAJIBHOTO TECTYBAHHS BH3HAYAETHCS HE
JIUIIE CaMUM IPOIECOM TeHeparlii Tpadiky, ajie i TUM, Kl caMe TTOKa3HUKHU 30UParoThCs
Ta aHAMI3YIOThCSI. METpUKU MPOAYKTUBHOCTI JO3BOJISAIOTH OIIIHWUTH, HACKIIBKH CHCTEMa
BIJINOBIJIa€ OYIKYBaHHSM KOPUCTYBA4iB 1 YW MOXKE BOHAa BUKOHATH YMOBHU YTOJ TIPO
piBeHb cepBicy (SLA). Skmo nns pyHKIIOHATBHUX TECTIB AOCTATHHO OTPUMATH «TaK»

a00 «HI» Ha 3amMUTaHHS MPO MPABWIBHICTH POOOTH, TO Y BUMAAKY 3 MPOAYKTHUBHICTIO

13

He0OXiTHA KUTbKICHA OITIHKA.

OpHi€0 3 KIIOYOBUX METPUK € Yac BIATYKYy CHUCTeMH. BiH MoOKa3ye, CKUIbKH
MUTICEKYHJ MPOXOJUTh BIJT MOMEHTY HAJCWUJIAHHS 3allUTy A0 OTPUMAHHS BIIMOBIJII.
OCKiTbKM ~ CepellHE 3HAa4YeHHS MO)Ke OyTH OMAHJIMBUM, Yy TMPaAKTUIl 3a3BUYAl
BUKOPUCTOBYIOTh TMepueHTwI. HalyacTime 3acTOCOBYEThCS TOKa3HUK p95, sKui
o3Hayae, 1o 95 % 3anuTiB BUKOHAJIMCS IMIBUIIE 32 BKa3aHUi yac. Hanpukian, skio p95
nopiBaroe 800 Mc, TO numie 5 % 3anmuTIB MepeBUNTMIN IO Mexy. lle mae Oumbm
peaicTUYHE YSABJICHHS MPO POOOTY CUCTEMH, aJIPKE€ HaBITh HE3HAYHA KUJIbKICTh MOBLIBHUX
BIJIMOBIICH MOXKE ICTOTHO BIUIMHYTH Ha KOPHUCTYBallbKHH JOCBiA. Y NESKHX BUIMAAKaX
3aCTOCOBYIOTH 1 OUIBII KOPCTKI MOKAa3HUKH, SK-O0T p99 abo p99.9, xonu inerbes mpo
KPUTHUYHI CEPBICH Ha KIITAIT IJIATIXKHUX CUCTEM.

[Ile ogHa BakJIMBa XapaKTEpUCTHKA -TIPOIYCKHA 37aTHICTH abo throughput. Bona
BUMIPIOETHCS K KUIBKICTh YCITIIITHO OOpOOJIEHUX 3aluTIB 3a CEeKyHay (requests per
second). Ileit moka3HUK JO3BOJISIE OIIHUTH, HACKUJIBKM CHCTEMA 3/1aTHA MaclITaOyBaTHUCS
I1J1 3pOCTaHHs HaBaHTaKEeHHs. Hampuknan, axuio BeO-101aToK cTabiibHO 00pobsie 500
3aMMTIB Ha CEeKyHAy, aje mnpu mnepexonai a0 700 moumHae 3pocTaTd yac BIATYKY Ta
KUIBKICTh TIOMHUJIOK, II€ O3Hayae, M0 MeXa MPOAYKTUBHOCTI JOCSITHYTa 1 TOTpiOHA
onTuMi3aIlisg abo Po3mo/aiI HAaBaHTAKCHHS Ha JI0JIATKOB1 PECYPCH.

He meHI cyTTeBOIO € MeTpUKa piBHS NOMMJIIOK -error rate. BoHa BU3Ha4aeThCs SIK
BIZICOTOK HEBJAJIMX 3aMUTIB BIAHOCHO I1X 3arajbHOI KUILKOCTI. 111 moMuiIkaMu 3a3BHYai
po3ymitoTh Biamosiai 31 craryc-kogamu HTTP 4xx abo 5xx, a Takoxx 3001 MepeKeBHX
3’eqHaHb. HaBiThb HeBenuke 3HaueHHs, Hanpukian 1 %, Moxe OyTH KPUTUUYHHUM IS
(1HaHCOBHX CEPBICIB, JIe¢ KOXHA HEBJala TpaH3aKIis MPU3BOAUTH A0 BTPATH TPOILEH YU
JOBIPH KITIEHTA.

Vel mi MeTpuku 3a3BHuail 00’ €IHYIOTBCS Yy CUCTEMY KPHUTEpIiB, sIka BU3HAYA€, YU
BIJIMOBIAa€e nonaTok BcraHoBieHMM SLA. Hampuxnan, kommnasis Moxke 3adikcyBaTH y
J0TOBOP1 3 KIl€HTamH, o p95 yacy BiAryky He nepesuinyBatume 500 mc, throughput
3aJIMIIATUMETHCA Ha piBHI He MeHIe HixK 300 3anuTiB Ha CEKyHy, a PIB€Hb TOMWJIOK HE
nepeBuiuTh 0,5 %. SAkuio pesynbratu TecTyBaHHS MIATBEPIKYIOTH LI YMOBH, CHCTEMA

BBQ)KA€ThCS TAKOIO, 110 BIJAMOBIAAa€ BUMOram. SKIIO X Xxoda O OJWH ITOKa3HUK BUXOIHUTH

14

3a MEX1, HEOOX1THO MPOBOAUTH ONTUMI3ALII0 -3MIHIOBATH apXITEKTypy, MaciITaOyBaTH
1HGpacTPyKTYpy ab0 NMepepo3nOIIIATH HABAHTAKECHHS.

TakuM YUHOM, METPUKHU MPOAYKTUBHOCTI € OCHOBOIO JIJIsI KIJIbKICHOT OIIIHKHU SIKOCTI
pobotu BeO-AonaTKiB. BOHM 103BOJMSAIOTE HE TIABKA BUSIBIATA MPOOJEMH, aje i
BUMIPIOBaTH MPOTpec IiCis ONTuUMi3aliid. be3 4JiTKUX YHUCIIOBHX KPUTEPIiB Oyab-sike
TECTyBaHHS TEPETBOPIOETHCS HA CYyO €KTHBHY OIIIHKY, Toll ik SLA 1 dopmanizoBaHi
MOKa3HUKH CTBOPIOIOTh 00’ €KTUBHMI CTaHAAPT, 38 AKUM MO>KHA CYAHUTH MPO TOTOBHICTD

CHUCTEMH JIO peabHO1 eKCIUTyaTaIlii.

2.3. Orasj icHyl0UHMX iHCTpYMEHTIB

OpgHuM 13 HAWUNOIIMPEHIUX PIIIEHb JJI HABaHTAaXYBAJIbHOTO TECTYBAaHHS €
Apache JMeter. Ile BiakpuTe mporpaMHe 3a0e3MeueHHs 3 0araToOpivyHOIO iCTOPIEID, SKE
IIMPOKO BUKOPUCTOBYETHCS y BEIUMKHX KoMmmaHiax. Jmeter (auB. puc. 2.1) miarpumye
pizai mporokonu -HTTP, FTP, JDBC, SOAP, JMS Ta iumi, mo poOuTh HOTo
YHIBEpCaJIbHUM I1HCTpyMEHTOM. OCHOBHOIO NEPEBarol0 € BeIMKAa KUIbKICTh TOTOBUX
IJIAriHIB 1 MOMJIMBICTh MOOYJOBM CKJIAIHUX CIIeHapiiB yepe3 rpadiunuil iHTepdeiic.
[Ipore Bukopuctanus JMeter yacto notpedye MOTYKHUX PECYpPCiB Ha OJIHIM MaIIWHI, a
MaciTaOyBaHHs Yepe3 pO3MOAITIEH] areHTH MOKe OyTH CKJIaJHUM y HanaltyBaHHi. Kpim

TOTO, IHTEp(EIC 1HOII BBAXKAIOTh 3aCTAPLIINM, 1110 YCKJIAJHIOE pOOOTY MOYATKIBIIIB.

15

[] (] Apache JMeter (5.3)
Dw‘JH&.DD'{F:\bb@\.ﬂﬁwﬁ%ii;;ﬁ 00:00:00 Ao o0)
v & build-adv-web-test-plan
25 HTTP Request Defaults
2% User Defined Variables Name: Home Page
2% HTTP Cookie Manager
25 HTTP Header Manager
2% loginData 2>
v {3 JMeter Users Basic Advanced
25 HTTP Request Defaults
I. » #" Home Page
» * ThinkTime
» * Changes HTTP Request
> * ThinkTime GET v Path: |/ Content encoding:

'l

HTTP Request

Comments:

Web Server

Protocol [http]: Server Name or IP: Port Number:

» * BugDetail Page
N D Redirect Automatically Follow Redirects Use KeepAlive D Use multipart/form-data D Browser-compatible headers
y ogin
. View Results Tree Parameters Body Data Files Upload
Send Parameters With the Request:

Name: Value URL Encode? Content-Type Include Equals?

Detail Add Add from Clipboard Delete Up Down

Pucynox 2.1 -Iatepdeiic IMeter

CyuacHUM KOHKypeHTOM € KO, SKui TIO3HIIIOHYETBCS SK PO3POOHUIIBKO-
Opl1€HTOBaHUM 1HCTPYMEHT (uB. puc. 2.2). Cuenapii B k6 onucyrotbcs MoBoto JavaScript,
10 J03BOJIsi€ Jierko iHterpyBatu ix y mporec CI/CD. InxkeHepu MOXYTh CTBOPIOBATH
THYyYkKi TECTH 3 YMOBaMH, IMKJIAMH Ta 3MIHHUMH, BHKOPHUCTOBYIOUH 3HAHOMUI
cuHTakcuc. [lepeBaroro € JNerkictb y BUKOPUCTaHHI Ta MIATPUMKA MacIITaOyBaHHS yepe3
xmapuuii ceppic k6 Cloud. Hampukian, komaHga MOXE JIOKaJbHO 3amycKaTu 0a3oBi
CIieHapii, a /Il BEJIMKOTO HaBaHTAXKEHHS -TiepeaaTH iX y xmapy. Henomnikom € oOMexeHa
KUIBKICTh BOY/JIOBaHMX METPUK y 0a30Bii Bepcli, a TaKOX HEOOXIAHICTh BCTAHOBJICHHS

CaMoOTO THCTPYMEHTY Ha CUCTEMY.

Pre-production
(proactive)

Virtual user traffic ---«... | .

"""" | Pre-prod Prod S EEERER

=] Metrics [Logs

16

Production
(reactive)

»!

-------------- Real user traffic

\

Software development life cycle

Pucynok 2.2 - Grafana K6

Ille onHuM mOMyJsipHUM pimieHHAM € Locust -inctpymeHnt Ha Python (quB. puc.

2.3), IKUH J03BOJISIE OTMIMCYBATH ClIEHApii y BUTJIAAL Koay. Mloro oco0MBICTIO € TPOCTOTa

CTBOPEHHSI CLIEHAPIiB Ta MOKJIMBICTh MACILITa0yBaHHS Yepe3 pO3IMOALT HABAHTAKEHHS Ha

KUIbKka poOoumx By3JiB. Locust mae BeO-iHTepdeic aisi BIACTEKEHHS pe3yJbTaTiB Y

peXUMI peaNbHOro 4Yacy, 10 poOUTh HOTO 3py4YHHM Uil eKcriepuMeHTiB. Hampuxman,

MO>KHa IIBHUJIKO IEPEBIPUTHU MOBEAIHKY CAUTYy M1/l 4aC OJJHOYACHUX MEPEXO/IIB Ha TOJIOBHY

CTOpPIHKY Ta CTOpiHKY odopmieHHs 3amoBiieHHsA. Bomnouac, y mopiBHsHHI 3 k6 a0o

JMeter, 1ieil IHCTpyMEHT Ma€ MEHILE TOTOBUX MOAYJIB 1 4acTO NOTpeOye OUIbIIE PYYHOrO

HaJIaloTyBaHH:.

17

N HOST SIS USERS WORKERS RPS FAILURES - sTop RESET @
L LOCUST http://api.initech.com RUNNING 21400 6 233.1 0%

CHARTS FAILURES EXCEPTIONS CURRENT RATIO DOWNLOAD DATA ! LOGS WORKERS

Median 95%ile 99%ile Average i Average Current Current

Requests Fails (ms) (ms) (ms) (ms) size (bytes) RPS Failures/s

20117.16

/blog 19749.39

/blog/[post-slug]

/groups/create b 3273.26

/signin 20070.84

/signin 20082.7

/users/[username] 19932.43

/users/[username] 11175.93

/v1/users/ 19932.11

Pucynoxk 2.3 -Ilpukian Locust

Bapto takox 3ramatm Gatling, skuit peanizoBanuii Ha Scala (muB. puc. 2.4) i
OpIEHTOBAaHWW Ha BHUCOKOMPOAYKTHBHE HaBaHTa)KyBaJlbHEC TECTYBaHHS. Horo cumbHa
CTOpOHA -BHCOKa IIBHJAKICTh T'€HEpallli 3amuTiB HaBiThb Ha OJHIA MaIllMHI 3aBISKH
acuHXpoHH1U apxitekTypi. Gatling miarpumye inrerpartito 3 CI/CD cucremamu Ta Hanae
3pyuni HTML-3BiTH. Hanpukiaza, oro 4acTo BUKOPUCTOBYIOTh y TEIEKOMYHIKAIHHUX
KOMITaHIfX, J€ HEOOXITHO MOJCIIOBAaTH JECATKH THCSY OJHOYACHHMX 3 €JIHAHb.
HenonikoM mist eskMx KOMaHJ MOXKE CTaTH HEOOXIAHICTh 3HaHb Scala mpu CTBOpPEHHI

CKJIaJIHUX CIICHApIiB.

18

Build, Execution, Deployment > Compiler > Scala Compiler > Scala Compile Server
Editor v| Use compile server for Scala

Plugins JDK: Project Default
» Version Control
. . JVM maximum heap size, MB: | 1024
¥ Build, Execution, Deployment
» Build Tools JVM options: -server -Xss100M
¥ Compiler
Excludes
Java Compiler

. v| Shutdown server if it is idle for minutes
Annotation Processors

Validation Advanced settings

RMI Compiler Use project home as compile server working directory

Groovy Compiler

Kotlin Compiler

Android Compilers
¥ Scala Compiler

Scala Compile Server

Pucynok 2.4 -Intepdetic Gatling

OxpeMmy Trpymny CKIaJaloTh KoMmepumiiiHi pimenHs, sx-or LoadRunner a6o
BlazeMeter. Bouu opieHTOBaHI Ha KOPIIOPATUBHHM CErMEHT 1 HAJalOTh PO3IIMPEHI
MOXJIUBOCTI -MIATPUMKY BEJIUKOI KUIBKOCTI MPOTOKOJIB, I1HTErpamilo 3 I1HIIUMHU
CUCTEMaMM MOHITOpPHUHIY, MaciiTaOyBaHHs y xmapl. Hanpuknan, BlazeMeter no3Boiisie
3amyckatu JMeter-ciieHapii 'y XmapHiil 1HQpPacTpyKTypi 3 THUCSYaMU BIPTYaJbHUX
KopucTyBauiB. [IpoTe OCHOBHMM HEIOJIKOM TakHUX PIIlIEHb € BUCOKA BapTICTh JIIICH31H,
10 POOUTH TX MAIONPUBAOIUBUMHU ISl HEBEJIMKUX KOMAaH]I.

Takum 4MHOM, ICHYIOY1 THCTPYMEHTH OXOILTIOIOTh IIUPOKUNA CIIEKTP MOMXKIHUBOCTEM:
BiJI THYYKHX Open-source pimeHp Ha KmTait k6 ta Locust 70 KOpHIOpaTUBHUX CUCTEM 13
MOBHOIO MIITPUMKOIO Ta 1HTerpallisiMu. Bubip 3anexxutsb Bif 11iIeH TeCTyBaHHS, OIOKETY
Ta PiBHS MIATOTOBKH KoMaHAu. Pa3oM 3 TUM, KOXKHE 3 IIUX pillieHb Ma€ CBO1 OOMEKEHHS,
Kl CTBOPIOIOTH HINIy JUIsl TOSBH HOBUX IHCTPYMEHTIB, IO TOEIHYIOTH MPOCTOTY,
aBTOMATHU3AIIII0 Ta HA0YHY aHAMITUKY. CaMe B Iii HIlIl MO3UI[IOHYETHCS PO3POOJICHUN Y

Mexax J1aHoi podotu iHcTpymeHT PerfBench.

19

2.4. llopiBHsIILHUI aHATI3 1 BUOIp migxoxy

Ornsi iCHYIOYMX THCTPYMEHTIB MOKa3ye, 10 KOXKHE PIIICHHS Ma€e CBOi MepeBard 1
HEJIOMIKH, sIKI BIUIMBalOTh Ha BHOiIp komaHau. Apache JMeter e kinacuyHuUM BapiaHTOM
JUTST KOMIUIEKCHOTO TECTyBaHHS, aJieé BHUMara€ 3HAYHUX PECYpCiB 1 CKJIaJHOTO
HaJIalmTyBaHHs. KO MpormoHye OUTBIN cydacHWH MiAXif i3 BUKOpHCTaHHIM JavaScript mms
crieHapiiB Ta MoskiauBicTio iHTerpanii B CI/CD, ame mae oOMexeHHs y Bidyauisarii Ta
notpedye 30BHINIHIX CEpBICIB Al MacimTabyBaHHSA. LOCUSt Bipi3HAETHCS MPOCTOTOIO
CTBOpPEHHsI CIieHapiiB Ha Python, mpoTe HOro MOXJIMBOCTI 3MCHIIYIOTBCS y BHIIAIKY
ckiaaaHux cueHapiiB. Gatling 3a0e3neuye BHCOKY MPOJYKTUBHICTh 3aBASKH ACHHXPOHHIM
apxiTeKTypi, ogHaK moTpedye 3HaHb Scala. KomepiiifiHi pilleHHS HAJAalOTh IMAPOKHMA
GyHKIIOHAT 1 MIATPUMKY, aji€ CTAlOTh HEJOCSHKHUMH JJI HEBEJIHMKUX KOMAaH] 4depes
BHCOKY BapTICTb.

[IIo6 xpamie BiAOOpa3UTH KIIOYOBI XapaKTEPUCTUKH, HABEAEMO IMOPIBHSIBHY

Ta0IUII0 HAHOUIBII MOMYJISIPHUX IHCTPYMEHTIB (UB. Ta0I. 2.1)

IHcTpy™MEHT IlepeBaru Henoniku IIpuknanu
3aCTOCYBaHHS

Jmeter [MlinTpumka Bucoxke TectyBaHHs BeO-
0araTbox MPOTOKOJIB, | CIIOKUBAHHA PECYpCiB, | AOJATKIB Y BEIUKUX
BEJINKA CIIJIBHOTA, | CKJIaJHE MacIITadyBaHHS | KOPHOPALIiIX
rpadivnmii iHTEpdeiic

k6 Cuenapii Ha OoOMexeHi ABTOMaTHYHI
JavaScript, iHTerpauist 3 | BOyngoBaHi METPHKH, | TECTH TPOIYKTUBHOCTI ¥y
CI/CD, XMapHe | HoTpe0ye BCTaHOBJICHHS DevOps-mporiecax
MacIITadyBaHHS

Locust ITpocrora MeHme roToBux HapanTaxxyBanbpHe
creHapiiB Ha Python, BeO- | MoyiB, obMexxeHa | TecTyBaHHS — e-Commerce
iHTepdelic y pealbHOMY | THYYKICTh CHUCTEM
qaci

Gatling Bucoka HeoOxignicTh TenexoMyHikawin
nponaykruBHicTh, HTML- | 3Hanb Scala, ckmaanimuii | Hi Ta iHAHCOBI CUCTEMU
3BiTH, aCHHXPOHHICTh CHUHTAKCHC

20

Ax BugHO 3 TaAbOmMMIN, XKOJAEH 3 IHCTPYMEHTIB HE TOEMHYE y €001 Bci OakaHi
XapaKTePUCTHKHU: TMPOCTOTY HaNaIlITyBaHHS, BOyIOBaHy Bi3yali3alilo pe3yJbTarTiB,
HIATPUMKY PO3MOAICHOTO BUKOHAHHS 1 MPU I[bOMY BIJICYTHICTh 3QJIEKHOCTI BiJl IOPOTHUX
minen3id. Came i 0OMEXEHHSI CTBOPIOIOTH MEPEIyMOBHU AJIsi PO3POOKH HOBHX PIIlIEHB,
OpI€HTOBAHUX HA MIBUIKY aBTOMATH3AIliI0 Ta 3pYIHUI KOPUCTYBAIIBKHUI TOCBI.

VY Mexax gaHoi TUIUIOMHOI poOoTH OyJsi0 0OpaHOo MiAXija, SKUH MOEIHY€E HaWKparii
pPHUCH ICHYIOYUX THCTPYMEHTIB: JCKJIApPAaTHBHUN OMHUC CIICHAPIiB, aBTOMATHYHE 30MpPaHHS
METPHK, BIIOOpaKEHHS pe3yJIbTaTiB y pealbHOMY Yacl, MOXKJIUBICTh baseline-nmopiBHIHHS
Ta TATPUMKA PO3MOAUICHUX areHTiB. lle cTamo OCHOBOIO Uisi CTBOPEHHS CHUCTEMH
PerfBench, skxa mo3uLIOHyeEThCS SK CAMOJOCTAaTHE pIMEHHSA [JIsl TECTYBAHHS

MIPOJTYKTUBHOCTI Y PO3MOIICHUX CEPEIOBUINAX.

21

3. TEOPETUYHA YACTUHA

3.1. Apxirekrypa incTpyMeHTy PerfBench

Apxitektypa cucremu PerfBench Oyma cmpoexkroBaHa TakuM YHHOM, 1100
3a0e3reunTu 0ajaHC MK ITPOCTOTOI0 BUKOPHUCTAHHS, THYUYKICTIO CIIEHAP1iB 1 MOXKJIMBICTIO
MacmITadyBaHHS y PO3MOJUICHUX CEpPEelOBUIIAX. [HCTPYMEHT CKIANA€ThCs 3 KUIBKOX
OCHOBHHUX KOMITOHEHTIB, SIK1 B3a€EMOIIIOTh MK c00010 3a gomomororo HTTP-iaTepdeticiB
1 IOTOKIB MO/ y PEXXUMI PEaNbHOTO Yacy.

Hentpansaum enementom cucremu € Control Plane -cepBepna uactuHa,
peanizoBana Ha Node.js 3 BukopuctanHaMm Express 1 SQLite six 6a3u nanux. Came 1ei
MOJyJIb BIJIMOBIAA€ 3a YHPaBIiHHS CIEHAPISIMU, 3allyCK 1 KOOPJMHAIIIO0 TECTIB, 301p
MeTpHK 1 (popmyBaHHs 3BITIB. baza manux 30epirae iHpopMalio Ipo CreHapii, 3amycKH,
METpPUKH, areHTIB 1 pe3ynbTaTu TecTiB. Bukopucranns SQLite 103BOJIMIIO CIOPOCTUTH
pO3TOpTaHHsA, K€ CHUCTEMa TMpaiioe 0e3 JOJaTKOBUX 3alie)KHOCTEH 1 TOToBa [0
BUKOPUCTAHHA «3 KOPOOKMY.

JIpyruM BaXJIMBUM KOMIIOHEHTOM € BeO-1HTepdeic, CTBOPEHUM 3a JOMOMOTOI0
React 1 Vite. Bin Hajgae xopucTyBaueBl 3py4yHUM CHoOCiO CTBOpPEHHS Ta pelaryBaHHS
CIIEHapiiB, 3alyCKy TECTIB, MOHITOPUHTY pe3yJbTaTiB y pEaJlbHOMY 4Yaci Ta aHami3y
3aBEepIICHUX 3amyckiB. [HTepdelic MICTUTh rpadiku 3aTPUMOK, MPOMYCKHOI 3JaTHOCTI,
pPIBHS TOMMJIOK, a TakKOX MiACYyMKOBY Tabmuito SLA-mokasznukiB. OcoOnuBa yBara
MPUALIEHa HAOYHOCTI Ta IPOCTOTI B3aEMO/I1i: HaBITh KOPUCTYBaY, IKM HE Ma€ TIMOOKOTO
JOCBiAYy pOOOTH 3 IHCTPYMEHTAMH HABAHTAXKYBAJbHOTO TECTYBaHHS, MOXE MIBUIKO
HaJAIITYBaTU CLIEHAPiH 1 OTPUMATH 3pO3yMIIUH 3BIT.

JUist AeMOHCTpalliHUX 1 HAaBYAJIbHUX LIUIEH nepedadyeHo okpeMuil Moy -Demo
Target. Lle HeBenukuii BeO-cepBic, SKUH IMITY€E pOOOTY peasibHOI CUCTEMU 3 IMapaMeTpamMu
3aTPUMKH, BHUIAJKOBMX IIOMUJIOK 1 BapiaTUBHOCTI y 4Yaci BianmoBiail. Hampuxnan,
KOPUCTYBad MOXE HaJalllTyBaTH CEpBIC TakK, MO0 KOXKEH 3amuT oO0poOisBca 13
3arpuMkoro 100 mc, npu 11boMmy 5 % 3amuTIB 3aBEPIITYBATMCS MOMUIKO0. TaKuil miaxif
J03BOJISIE IPOBOJIUTU €KCIEPUMEHTH Ta BIJIPAI[bOBYBATH CleHapii 0e3 MiAKIIOYEHHS 10

CTOPOHHIX CHCTEM.

22

Oco6muBYy ponb y apxXiTEeKTypi BiAIrparoTh po3noauieHi aredTu. L{e merki nmpormecu
Ha Node.js, K1 MOXKYTh 3aIlyCKaTUCS Ha PI3HUX BYy3J1aX MEPEXi Ta OTPUMYBATH 3aBIaHHS
BiJ Control Plane. ArenTu peectpyroTbest y cucTeMi, HajicuiaroTh heartbeat-curnanu npo
CBi CTaH, OTPUMYIOTh CIICHAPIi /11 BUKOHAHHSI Ta MIEPEAIOTh PE3yIbTaTH TECTIB HA3al y
HEHTpaJIbHUM cepBep. TakuM YMHOM, HABIThH SIKIIO OJIMH BY30JI HE 3JaT€H 3r€HEpYyBaTH
NoTpiOHE HaBaHTAKEHHSA, KIJIbKa areHTIB MOXYTh PO3MOAUINTH HOro MiX C€000¥0.
Hanpuxman, 11 MOJENIOBaHHS JECATH THUCAY OJHOYACHHX KOPUCTYBadiB MOXKHA
MIKITIOYUTH KIJTbKA areHTIB Ha PI3HUX CEpBEpax, 1 KOKEH 3 HUX BUKOHYBATHUME YACTUHY
HABaHTa)KCHH.

Vc1 KOMIOOHEHTH B3aeMoOalloTh 3a gomnoMororo REST-3amutiB 1 motokiB SSE
(Server-Sent Events), mo [103BOJsiE y pealbHOMY 4Yaci OTPUMYBAaTH METPHKH 1
BiIoOpaxkatu ix y BeO-iHTepdeiici. Lleil miaxia copourye iHTerpaumio Ta 3alde3nedye
po30pui OOMIH JaHUMH MIXK KJIIEHTOM 1 CEPBEPOM.

3aranom apxitektypa PerfBench opienTtoBana na modular-design: xopuctyBau
MOK€ BUKOPHUCTOBYBATH JiuIIe 0a30BY (DYHKIIIOHAJIBHICTh (JIOKAJbHUN 3aIyCK 13 OAHUM
pyiiieM), abo X pPO3MIMPIOBATH CHUCTEMY 3a PaxyHOK areHTiB, JOJATKOBHX pYIIIiB
(manpuknan, k6) 1 iHTerpauiid. Lle poOUTh 1HCTPYMEHT NMPUAATHUM SIK JJI HEBEIMKUX

€KCIIEpUMEHTIB, TaK 1 1711 MACIITAOHUX MEPEBIPOK y PO3IMOAUICHUX CEPEIOBUIIIAX.

3.2. Moaeab 1aHUX Ta CTPYKTYpa clieHapiiB

Hns Ttoro mio6 iHctpyment PerfBench wmir 3a0esnedyBaTH TOBHHN IIHKI
HABAHTAXXYBAJHLHOTO TECTYyBaHHS, HEOOXIMHO OYyJ0O CTBOPUTH MOJEIh JaHUX, siKa O
omuCcyBaja BCl OCHOBHI CYTHOCTI cucteMu. BulOip Ha kopucth 0a3u ganux SQLite
MOSICHIOETBCST 11 MPOCTOTOO, MOPTATHBHICTIO Ta BIJCYTHICTIO TMOTPEOM y 3OBHIIIHIX
3anexHocTsaX. Lle poOUTh IHCTPYMEHT CaMOAOCTATHIM Ta 3pYYHUM Y PO3TOPTaHHI, aJKe
BCsl 1H(popMallist 30epiraeTbes B OgHOMY (haii.

VY ueHTpi MojeNi 3HAXOOUTHCS CYTHICTH cueHapiil. CueHapiii omucye, sike came
HABaHTa)XCHHs OyJie CTBOPIOBATHUCS, IKUMHU TTapaMeTpaMH BOHO XapaKTEPU3YETHCS Ta K

OyIyTh PO3MOMUIATUCS 3aNUTH. BiH MICTHTH Ha3BY, OMHKC 1 TOJIOBHE TMOJIE -Crien(iKaIiio

23

y dopmati JSON. Came 1151 crienindpikariisi BU3Ha4a€ mapamMeTpu TECTY: aApecy i, METO
3alUTy, KIUIBKICTh OJHOYAaCHUX KOPHUCTYBayiB, TPHUBATICTb TECTY, 3aTPUMKHA MIX
3anuTamMu, a Takok SLA-moporu. VY OUIBII CKJIAJHUAX BHUIAJKaX CIEHAPIA MOXKe
BKItouaTu flow-mocaiioBHOCTI, KOJM CHOYATKy BHKOHYETHCS BXiJl Yy CHCTEMY, a Jall -
OTPUMAaHHS JIaHUX 3 BUKOPUCTAHHSM TOKEHA aBTOPHU3allii.

JpyruM BaXJIMBUM eJleMEHTOM € 3amyck (rum). Bin 306epirae indopmariro mpo
KOHKpPETHE BUKOHAHHS CIIEHApII0: Yac MOYaTKy, 3aBEPIICHHS, CTaTyC, a TAKOXX MPUMITKH
Ta MiACYMKOB1 pe3ynbTaTd. KojkeH 3amyck TMOB’s3aHUM 3 BIAMOBIIHUM CIIEHApIEM, IO
J03BOJISIE BIFCNIAKOBYBaTH ICTOPit0 3MIH 1 TIOPIBHIOBaTH pE3yJNbTaTH PI3HUX
€KCIICPUMEHTIB.

Jlnst aHamizy MPOIYKTUBHOCTI KJIIOYOBY pOJIb BIJICPalOTh MeTPUKH. BoHu
3aMUCYIOThCSl y 0a3y JaHMX y BHUIJIANI OKPEMHUX TOYOK, KOXHA 3 SIKUX MICTUTh 4ac
BUKOHAHHS 3aIUTY, 3aTPUMKY Y MUTICEKYHaX 1 KO BiAmoBii. Taki 3amucu J03BOJISIFOTH
OynyBaTu rpadikid NPOAYKTHUBHOCTI B pealbHOMY uaci W ¢GopMyBaTH arperoBaHi
MOKa3HUKU, SAK-O0T p50, p95 um cepenne 3HaueHHs. OkpeMo 30epiraroTbCsi HeBAAJII
3allUTH -BOHM MICTATHh 1H(OpMAII0 MPO CTaTyc-KOJI 1 YacTUHY Tija BIAMOBiMAL, IO
JI03BOJIsIE€ PO3POOHMKAM IIBUIKO aHANI3yBaTH MPUUYNHU TTOMUJIOK.

VY Bumaaxky po3nojijIeHOr0 BUKOHAHHS JOJAETHCS I1I€ OJIHA CYTHICTh -areHTH. Lle
BY3JIY, SIKI BAKOHYIOTh YACTUHY HABaHTAKEHHS. J[JI1 KOKHOTO areHrta 30epiratoTbCsi Horo
imeHThd1KaTop, Ha3Ba, MOTYXXHICTh (capacity), cTraTyc Ta 4ac ocTaHHboro heartbeat.
Takum uymaom Control Plane wmae 3mory BiACHIIKOBYBAaTH AaKTyaJbHHH CTaH
iHppacTpykTypu. KosKHOMYy areHTy mpu3HA4aroThCs OKpeMi 3aBiaHHs (assignments), y
AKUX (PIKCYETHCS, IKY CaM€ YaCTHHY TECTY BIH BUKOHYE.

Oco6nuBe 3nauenns s PerfBench mae ctpykrypa cuenapio y dopmati JSON.
Hanpukinazn, npocTuil crieHapiii MOXe BUTIISAIATH TaK:

{

"engine": "native",
"target": "http://localhost:9090/work?delay=100&fail=0.05",
""concurrency": 10,

"requests™: 500,

24

"thresholds": { "p95": 800, “errorRatePct™: 1 }

by

TyT MU BU3HAYAEMO MIILOBUN pecypc, piBeHb KOHKYPEHTHOCTI, KUIBKICTh 3aIHTIB 1
gomyctumi nmoporu SLA.

binbm cxmagnuil nmpukiaa Moxe BkiIrodaTu flow 3 KiIbKOX KPOKIB: aBTOpH3allis,
OTpPMMaHHS TOKEHAa, BUKOHAHHS 3allUTy 3 MapaMeTpaMu. Y TaKOMY BHUMAJKy CIeHapii
OTIHCYE JIOTIKY, sIKa HAOMIKAETHCSA 0 pealbHUX il KopucTyBada. [1ogi0HI MOKIUBOCTI
poOJIsATH IHCTPYMEHT HE MPOCTO TeHepaTopoM Tpadiky, a CepeoBUIIEM s
MOJICITFOBAHHS TOBHUX O13HEC-TIPOIIECIB.

Takum uymHOM, Mojnens pganux PerfBench oxommtoe Bci eranu podotu 3
HABAHTAXXYBAJbHUMU TECTAMH -B1J] OITUCY CIICHAPIIO 10 30€peKEeHHS JeTaTbHUX METPHUK 1
MIJCYMKOBUX PE3yNbTaTiB. 3aBIASKH I[bOMY KOPHUCTYBaul OTPUMYIOTh HE JIUIIE «CyXI1
udpu», a i TOBHY 1CTOPIIO 3aITyCKIB, MOKJIUBICTh TOBTOPHOTO BiITBOPEHHS YMOB 1 6a3y

IUTST aHAJTITHKH.

3.3. [IpuHuMn po6oTH pyLIiiB HABAHTAKEHHS

Pymiiii HaBaHTaXeHHsI € IEHTPAIbHUM E€JIEMEHTOM OYIb-sIKOTO 1HCTPYMEHTY IJis
TEeCTyBaHHS MPOJYKTUBHOCTI, aJkK€ caMmMe BIH BIJANOBiJae 3a reHeparlito Tpadiky Ta
CTBOPEHHSI HaBaHTaXeHHS Ha LIbOBY cuctemy. ¥ PerfBench peanizoBano aBa BapiaHTh
pyIIiiB: BIacHUM BOyIOBaHMI MEXaHI3M 1 1HTEerpailiro 3 iHCTpyMeHToM k6. Ile mo3Bossie
MOEMHATH TPOCTOTY Ta KOHTPOJIHOBAHICTH JIOKAJIBHOTO TeHEparopa 3 THYYKICTIO 1
MOTY>KHICTIO 30BHIIIHBOTO PIILICHHS.

BOymoBanuii pyirnii mpaioe Ha ocHoBi 0i0mioreku undici mms Node.js, ska
3a0e3neuye acCHHXpOHHE BUKOHAHHS Benukoi KibkocTi HTTP-3anuTis. Ilig yac 3amycky
cuenapito Control Plane iHimioe myn «BIpTyaldbHHX KOPUCTYBauiB», SIKI HaJCHJIAIOTh
3aMUTH BIJMOBITHO 10 3aJaHuX MapameTpiB. Hampukian, skmio y cieHapii BKa3aHO
concurrency = 20 Ta requests = 1000, pymiiii po3noAUIUT, HABAHTAXKEHHS TAKUM YUHOM,

110 OJIHOYacHO mpairoBaTuMe 20 MOTOKIB, sIKI MOCTYNOBO BUKOHYBATHUMYTh HEOOXITHY

25

KUTIBKICTh 3alUTIB. BaXXKTMBUM acIeKTOM € MOKJIMBICTD 3aaBaTH o1l HABaHTAXKCHHS:
steady 17151 cTab1IBHOTO MOTOKY, ramp JIsl MOCTYIOBOTO 3pOCTaHHs Ta spike 11t pi3Koro
cTpuOka. TakuM 4YMHOM, HaBITh 0a30BUM PYIIiH J03BOJISIE MOJICIIOBATH THUIIOBI ClIEHApPIi
BUKOPHUCTAaHHA BEO-10JaTKIB.

OxkpiM MpOCTUX MapaMeTpiB, BOYyJAOBaHUN pPYUIH MIATPUMY€E OUIBII CKIIATHI
cueHapii. Flow-mozeni m03BOJISIIOTh ONMUCYBATH IOCIIJIOBHICTh KPOKIB, IO IMITYHOTH
peanbHi aii KOpHUCTyBaya, HANPUKIAA: aBTOPHU3allisl, OTPUMAaHHS TOKEHA, 3aBaHTAKCHHS
JaHuX. Y KOXXHOMY KpOIll MOXYTb BUKOHYBATHCSI 3allUTH 3 E€KCTPAaKLI€I0 3MIHHUX 13
BIJIMTOBI/II Ta MOJAJIBIIOIO MIJCTAHOBKOIO 1X y HACTYITHI 3anuTH. Lle Habmmkae TecTyBaHHS
70 peaibHUX O13HEC-MPOLECIB 1 pOOUTH PE3yJIbTaTH OUIbII MPAKTUYHUMH ISl KOMaHIU
PO3POOKH.

[arerparnis 3 K6 mo3Bomsie po3mmputu MoximBocTi PerfBench y Tux Bumanmkax,
KOJMU TMOTpiOHI MacmTabHI creHapii abo cnenu@iuHi MOMKIUBOCTI, BIICYTHI ¥y
BOynoBanoMy pyiii. [Ipu mpomy PerfBench aBromatuuno renepye k6-ckpunt Ha OCHOBI
OMMCAHOI0 CIIEHApII0 Ta BUKOHYE #oro 3a jgomoMoror komauau k6 run. Ilicns
3aBEpILICHHS TECTy pe3yibTaTH y ¢dopmari summary HapcsThCs Ta JOAAIOTHCA y 3BIT
cuctemu. lle mae 3mory noeaHatu 3pydHICTh pobotu uepe3 iHTepdeiic PerfBench 13
HAJIWHICTIO TIEPEBIPEHOTO Yy MPOMUCIIOBHUX cepenoBuiax iHcTpymenty k6. Hampukian,
IHKEHEp MOXKE CTBOPUTH cCleHapid 13 mix-Tpadikom uyepe3 U, a dakrtuune
HaBaHTa)x€HHsI Oyjie 3reHepoBane k6 3 TOUHUM KOHTPOJIEM yCiX MapameTpiB.

KirouoBoro ocobimBicTioO 000X pymiiiB € 30ip METpUK y peallbHOMYy daci. Y
BUIAJIKYy native-pyliis KOXKEeH 3alUT 3alMuCYy€eThCA B 0a3y 3 4aCOM BHUKOHAHHS, CTaTyCOM 1
3aTPUMKOI0. Y mapajieIbHOMY MOTOLI Il IaHl arperyroThecs Ta HaJcuialTbes yepe3 SSE
y BeO-iHTepdeiic, e KopucTyBad 0aunuTh rpadiku cepeaHboi 3aTPUMKH, MEPICHTUIIB,
MPOITYCKHOT 3JaTHOCTI Ta PiBHS MOMUJIOK. 3aBISKH IIbOMY MO)KHA HE YEKaTH 3aBEPIICHHS
TECTy, 100 OLIHWUTU MOBEAIHKY CHUCTEMHM: JOCTAaTHHO KIJIBKOX CEKYH] 3alycKy, adu
MOMITUTH TSH/ICHIIIIO.

Takum yuHOM, pymii HaBaHTaxkeHHs y PerfBench 3a0e3neuytore Oananc Mix
IPOCTOTOI0 Ta MOTYXHICTIO. BOynoBaHMil MeXaHI3M J103BOJIIE€ IIBUIKO 3aIllyCKaTH

JIOKaJIbHI ClieHapii 0e3 J0JaTKOBUX 3aJIeKHOCTEH, TO1 sK iHTerparlis 3 k6 BigkpuBae

26

HUIAX O MAacIITaOHOrO MPOMUCIOBOrO TecTyBaHHA. OOuaBa BapiaHTU MPALIOIOTH Y
pamMKax €IWHOI CHUCTeMH, IO CHPOIIYyE POOOTYy KOpPUCTyBadya Ta POOUTH 1HCTPYMEHT

YHIBEpCAIBHUM JJI PI3HUX 3aB/IAHb.

27

4, IPAKTUYHA YACTHUHA
4.1. Peanizanisa OexeHxy

bekenn cucremn PerfBench peamizoBanmit Ha 1iardgopmi Node.js 3
BUKOpUCTaHHAM TypeScript Ta ¢peiimBopky EXpress. OcHOBHE 3aBiaHHS CEpBEPHOI
yacTUHU -30epiratu creHapii TecTyBaHHS, KEpyBaTH 3allyCKOM HaBaHTaXyBaJbHUX
BUTIPOOYBaHb, 30MpaTH METPHKHU Ta HajgaBaTH pe3yiabTaTH depe3 API. Jlns 36epekeHHs
JaHUX BUKOPUCTOBYeThest SQLite, 1m0 mo3Boisie 00iiiTHCS 06e3 J10JaTKOBOI
1HGPACTPYKTYpH Ta POOUTH CHCTEMY MPUAATHOIO IS IIBUAKOTO PO3TOPTAHHS.

APXITEKTYpHO OEKEH/| CKIAAAEThCS 3 KUTBKOX MOJIYIIB:

 Index.ts -Touka Bxofy, IO iHiIiaTi3ye cepBep i MAKIIIOYAE MAPIIPYTH;
« store.ts -mMoynbp po6oTH 3 6a3010 TaHUX;
o routes/ -gupekTopis 3 okpeMuMH (alamMu JUIS CIICHApiiB, 3aIyCKiB, arcHTIB 1

IIPECETIB.

3anmyck cepBepa 3aiMcHIOEThCS Yy (aitmi index.ts. TyT CTBOPIOETBCS EK3EMILIAP
Express, minkmovatroteess middleware qnst o6pobku JSON-zammtiB 1 CORS, a takox

BH3HAYAIOTHCS OCHOBHI MapHaipyTH.

import express from "express";
import cors from "cors";

import bodyParser from "body-parser";

import scenariosRouter from "./routes/scenarios";
import runsRouter from "./routes/runs";
import agentsRouter from "./routes/agents”;

import presetsRouter from "./routes/presets";

const app = express();
app.use(cors());
app.use(bodyParser.json());

I health-check
app.get("/health™, (req, res) => {

res.json({ status: "ok" });

28

b;

Il ocnosui mapupymu
app.use("/api/vl/scenarios"”, scenariosRouter);
app.use("/api/vl/runs”, runsRouter);
app.use("/api/vl/agents", agentsRouter);
app.use("/api/vl/presets”, presetsRouter);

const PORT = 8080;
app.listen(PORT, () => {
console.log(" PerfBench backend listening on port ${PORTY});
b;
30epiranHs gaHux opradizoBane uepe3 SQLite. Ilpu mnepmomy 3amycky

CTBOPIOIOTHCSI TAONUIl ISl CIIEHApiiB, 3alyCKiB, METPUK 1 areHTiB. Y Qaimi store.ts

onKcaHa JIOT1Ka MIJKII0YEHH 0 0a3u Ta 1Hiliam3anli CTpyKTypHu:

import Database from "better-sqlite3";
export const db = new Database("perfbench.db™);

Il cmeopennss mabauyw
db.exec("
CREATE TABLE IF NOT EXISTS scenarios (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT,
description TEXT,
spec TEXT,
createdAt DATETIME DEFAULT CURRENT_TIMESTAMP,
updatedAt DATETIME DEFAULT CURRENT_TIMESTAMP

);

CREATE TABLE IF NOT EXISTS runs (
id INTEGER PRIMARY KEY AUTOINCREMENT,
scenariold INTEGER,
status TEXT,
startedAt DATETIME,
finishedAt DATETIME,
notes TEXT,

29

createdAt DATETIME DEFAULT CURRENT_TIMESTAMP,
updatedAt DATETIME DEFAULT CURRENT_TIMESTAMP

);

CREATE TABLE IF NOT EXISTS metrics (
id INTEGER PRIMARY KEY AUTOINCREMENT,
runld INTEGER,
createdAt DATETIME,
elapsedMs INTEGER,
status INTEGER
);
Dk
s cueHapiiB peani3oBaHHN OKpeMHUI MapmipyT SCENnarios.ts, sikuii 1o3BoiIsiE
CTBOPIOBAaTH, OTPUMYyBaTH Ta Buaanatu 3amucu. Koxen crenapiit 36epirac JSON-

cnenu@ikalio, 10 BU3HAYAE NapaMeTPU TECTYBaHHS.

import { Router } from "express";

import { db } from "../store";
const router = Router();

Il ompumamu sci cyenapii
router.get("/", (req, res) => {
const rows = db.prepare("SELECT * FROM scenarios").all();

res.json(rows);

b;

// cmeopumu HO8ULl cyeHapiti

router.post("/", (req, res) => {
const { name, description, spec } = reqg.body;
const stmt = db.prepare("INSERT INTO scenarios (name, description, spec) VALUES (?, ?, ?)");
const result = stmt.run(name, description, JSON.stringify(spec));

res.json({ id: result.lastinsertRowid });

b;

Il suoanumu cyenapiu
router.delete("/:id", (req, res) => {
const stmt = db.prepare("DELETE FROM scenarios WHERE id = ?");

30

stmt.run(reg.params.id);

res.json({ success: true });

b;

export default router;

AHQJIOTIYHUM YWHOM IOOYJIOBaHI MapIIpyTH JJIsl 3amycKiB (runs.tS) Ta areHTiB
(agents.ts). Y BuIaaKy 3ammycKiB peajizoBaHa JIOTiKa CTBOPEHHS HOBOTO TECTy, 00poOka
3YNUHKH, 30MpaHHs METPUK 1 pOpMyBaHHSA MiJCYMKOBHX 3BITIB.

Takum umHoMm, OekeHa PerfBench BHKOHye poOJib «KEpYHOUOTO LEHTPY», SKHN
KOOpJIMHYE BCl MPOIIECU: BiJ CTBOPEHHSI CIICHApIiB 1 3aIlyCKy TECTIB JI0 300py METPHK 1
dopmyBanHs 3BiTiB. Horo apxitexTypa moGyoBaHa Tak, 100 3aIHMIIATHCA MAKCHMAIBHO
MPOCTOI0 1 BOJHOYAC 3a0e3medyBaTH BCl HEOOXIJHI MOXJIMBOCTI JJIsi aBTOMAaTHU3allii

TECTYBaHHA MPOJTYKTHUBHOCTI.

4.2. Peanizauisi ppoHTEHTY

®ponrenn cucremu PerfBench peamizoBanmii 3 BukopucranHsMm React Ta
TypeScript, a 1y mBUAKOT 30ipKH 3aCTOCOBYETHCS iHCTpyMeHT Vite. OCHOBHE 3aBIaHHS
1HTEepQeicy noyrae y Tomy, 1jo0 Ha/laTh KOPUCTYBayeBl MPOCTUH Ta 3pO3yMUIMHI CIOCIO
CTBOPEHHSI CIICHApiiB, 3alyCKy TECTIB 1 MEpEerisiy pe3yJbTaTiB y PEKHUMI peasbHOTro
qacy.
CtpykTypa KIIEHTChKOI YACTUHM BKJIIOYAE K1JTbKA OCHOBHUX KOMITOHEHTIB:
o App.ISX -roJOBHUN KOMIIOHEHT, IO BIAMOBIAAE 3a MAapHIPYTH3ALII0 MIX
CTOpIHKAMU;
o Templates.tsx -mepesnik roTOBUX MIA0JIOHIB CIICHAPITB;
« Guide.tsx -moBiAKOBI MaTepiajau 3 MOSACHCHHSIMU,;
« RunDetails.tsx -cTopiHka 3 pe3ysibraTamMu 3aIycKy, J¢ BinoOpakaroThcs rpadiku Ta
METPUKU;
« api.ts -moxayss B3aemoii 3 6exengom yepe3 REST APIL.
HaiiBa)xTMBIIIUM €JIEMEHTOM € CTOpIHKa CTBOPEHHS ciieHapito. TyT KopucTyBad

Moke Bkazatu niiboBuii URL, MeTox 3amuty, mapameTpu KOHKYPEHTHOCTI, TPUBAIICTD,

31

npodine HaBaHTaXeHHS Ta SLA-noporu. /[11poro BUKOPUCTOBY€ETHCS 3BHUUYaiiHa (popma

3 KOHTpoJsiMH React.

import { useState } from "react";

export default function ScenarioForm({ onSubmit }: { onSubmit: (data: any) => void }) {
const [target, setTarget] = useState("");
const [concurrency, setConcurrency] = useState(10);
const [requests, setRequests] = useState(100);
const [p95, setP95] = useState(800);

const handleSubmit = (e: React.FormEvent) => {
e.preventDefault();
onSubmit({
engine: "native",
target,
concurrency,
requests,
thresholds: { p95, errorRatePct: 1 }
D;
b

return (
<form onSubmit={handleSubmit} className="form">
<label>Target URL</label>
<input type="text" value={target} onChange={e => setTarget(e.target.value)} />

<label>Concurrency</label>

<input type="number" value={concurrency} onChange={e => setConcurrency(+e.target.value)} />

<label>Requests</label>

<input type="number" value={requests} onChange={e => setRequests(+e.target.value)} />

<label>P95 threshold (ms)</label>

<input type="number" value={p95} onChange={e => setP95(+e.target.value)} />

<button type="submit">36epeemu cyenapin</button>

</form>

);

32

}

[1106 oTpuMaTH METPUKHU y PEXKHUMI PEaTbHOTO Yacy, (POHTEH/I IMiJKITFOYAETHCS JI0
SSE-notoky 6exenay. Lle mae MOXIMBICTH MamioBaTu Tpadiku 3aTPUMOK, MPOMYCKHOT

3IaTHOCTI Ta PiBHS MOMUJIOK 0€3 Iepe3aBaHTaKEHHS CTOPIHKH.

import { useEffect, useState } from "react";

export default function RunStream({ runld }: { runld: number }) {
const [latencies, setLatencies] = useState<number[]>([]);

useEffect(() =>{
const eventSource = new EventSource("/api/v1l/runs/${runld}/stream’);
eventSource.addEventListener("metric", (e: any) =>{
const data = JSON.parse(e.data);
setLatencies(prev => [...prev, data.elapsedMs]);

b;

return () => eventSource.close();

}, [runid]);

return (
<div>
<h3>Live Latency</h3>

{latencies.slice(-10).map((ms, idx) => (
<li key={idx}>{ms} ms
)}

</div>
);
}

Jl1st BimoOpaskeHHsI aHATITUKA BUKOPUCTOBYIOTHCSI BOYT0OBaHI Tpadiky Ta TaOIuiIi.
Hanpuknan, y komnonenti RunDetails.tsX xopuctyBad 0aunTh MiJICYMKOBI METPHKH
3anmycky -pS0, p95, throughput 1 piBenr mommiiok. Ile 103BoJII€ MIBUAKO OIIHUTH, YU

MpoMIIIIa cUcTeMa MepeBipky 3a SLA.

type Summary = { p50: number; p95: number; throughput: number; errorRate: number };

export default function RunSummary({ data }: { data: Summary }) {

33

return (
<div className="card">
<h3>ITiocymku 3anycxy</h3>
<p>p50: {data.p50} ms</p>
<p>p95: {data.p95} ms</p>
<p>Throughput: {data.throughput} req/s</p>
<p>Error Rate: {data.errorRate}%</p>
</div>
);
}

3aBAsKM Takifi opraHizaimii KOPUCTYBau OTPUMY€ IHTYITUBHHN 1HTepdeiic: BiH
CTBOPIOE CIieHapiil yepe3 popmy, 3amycKae TeCTyBaHHS Ta OJipa3y OauuTh KUBI rpadiku 1
MIJCYMKOBI TOKa3HHMKHU. lle no03Bojsie MIBUAKO pearyBaTH Ha BUSBIIEHI NpoOieMu W

MOPIBHIOBATH PE3YJIbTAaTH PI3HUX 3aITYCKIB.

4.3. JlemoHcTpaniiiHa mijib i cueHapii 3amyckiB

[I{o6 mepesipsatu podoty PerfBench 0e3 migkiaroueHHS 10 CTOPOHHIX CEPBICIB, Y
MPOEKTI € HeBeNnuKa «ty4yHa» 1iab -HTTP-cepsic, skuil iMiTye TOBEIIHKY peajbHOTO
BeO-moaaTKy. BiH 703BOJIsI€ KepyBaTU 3aTpUMKAMH, BapiaTUBHICTIO 4acy BIAMOBIIAI Ta
YaCTKOIO MOMUJIOK. Tak MU OTPUMY€EMO KOHTPOJIbOBAHE CEPEOBUILIE AJIsi EKCIIEPUMEHTIB,
ne MokHa BiaTBoproBatu steady, ramp 1 spike mpodur Ta ogpazy OauuTH BIUIMB
napameTpiB Ha p935, throughput Ta error rate.

Huxde HaBeieHO CIIpoIeHUid BapiaHT server.js uist nemo-1ui (Express). Mapuipyt
/work npuiimae delay, jitter 1 fail, a noMamHs cTopiHKa TpaHCIIOE arperoBaHi METPUKHU

yepe3 SSE.

const express = require("express");

const app = express();
app.use(express.json());
let stats = {

total: 0, ok: O, errors: 0,

sumLatency: 0, latencies: []

J

Il SSE: mpancnioemo xopomky 36edeny ananimuxy Kodxcui ~1c
app.get("'/", (req, res) => {
res.setHeader("Content-Type", "text/event-stream™);
res.setHeader(*"Cache-Control", "no-cache");
res.flushHeaders();

const timer = setinterval(() => {
const n = stats.latencies.length || 1;
const avg = Math.round(stats.sumLatency / n);
const p95 = percentile(stats.latencies, 0.95);
const payload = {
total: stats.total,
ok: stats.ok,
errors: stats.errors,
errorRate: +(stats.errors / Math.max(1, stats.total) * 100).toFixed(2),
avgLatency: avg,
p95
b
res.write("event: summary\ndata: ${JSON.stringify(payload)}\n\n*);
Il 06nynsiemo rossue sixkno 3a 10c
if (stats.latencies.length > 10000) {
stats.latencies = stats.latencies.slice(-2000);
stats.sumLatency = stats.latencies.reduce((a, b) =>a + b, 0);

}
}, 1000);

req.on("close", () => clearlnterval(timer));

b;

app.get("/health”, (_, res) => res.json({ status: "ok" }));

app.get("/work", async (req, res) =>{
const base = toMs(req.query.delay, 0); // 6azosa 3ampumxa, mc
const jitter = toMs(req.query.jitter, 0); // sapiayis jitter, mc

const fail = Math.min(Math.max(+req.query.fail || 0, 0), 1); // 0..1

34

35

const extra = jitter ? randint(-jitter, jitter) : O;

const latency = Math.max(0, base + extra);

const t0 = Date.now();
await sleep(latency);

const isFail = Math.random() < fail;
const elapsed = Date.now() - t0;

I 36ip cmamucmuku
stats.total++;
stats.sumLatency += elapsed;

stats.latencies.push(elapsed);

if (isFail) {

stats.errors++;

return res.status(500).json({ ok: false, error: "demo fail", elapsed });
}else {

stats.ok++;

return res.json({ ok: true, elapsed, jitterApplied: extra });

}
b;

Il ymunimu
function sleep(ms) { return new Promise(r => setTimeout(r, ms)); }
function randlint(a, b) { return Math.floor(Math.random() * (b -a + 1)) + a; }
function toMs(v, def) { return Number.isFinite(+v) ? +v : def; }
function percentile(arr, p) {
if (Yarr.length) return 0;
const sorted = [...arr].sort((a, b) => a - b);
const idx = Math.min(sorted.length - 1, Math.floor(p * sorted.length));

return sorted[idx];

const PORT = 9090;
app.listen(PORT, () => console.log("Demo target on :${PORT}"));

Takuii cepBiC 3py4HHH ISl «KEPOBaHUX» EKCIepuMeHTiB. Hampukman, skimo

3amyctutu /work?delay=100&;jitter=80&fail=0.05, Mu oTpumaemo cepenHIO 3aTPUMKY

36

omuzpko 100 mc, po3kua y mexax +80 Mc 1 ~5% MNOMHIIOK -I[bOTO JOCTAaTHHO, abu
MIPOMOJIETIIOBATH peabHUI MpoJakiieH-TpadiK 3 IIyMOM 1 3005IMH.

[[loOu mBUAKO MEPEBIPUTH JEMO-II1Ib 3 KOHCOJ, IOCTaTHBO KIJIbKOX 3aIlUTIB:

bazoea nepegipka 00CmynHocmi

curl http://localhost:9090/health

1) Cmanuu cyenapiu: 100 mc 6e3 nomunox

curl "http://localhost:9090/work?delay=100"

2) Bunaoxosicmu y 6ionogiosax: £80 mc 0o bazosux 120 mc

curl "http://localhost:9090/work?delay=120&jitter=80"

3) In'exyis nomunox ~10%

curl "http://localhost:9090/work?delay=80&fail=0.1"
Ipuxnagu cuenapiis pias PerfBench

Huxye -kinbka roroBux Spec mna 3amycky 3 Ul abo uepes API. Bonwu
nemMoHcTpyroTh Steady, spike i flow migxomau, a Takox traffic-mix.

Steady / SLA-koHTpOoIb p9I5<500 mMc
{

"engine": "native",
"target™: "http://localhost:9090/work?delay=100&fail=0.05",
"method": "GET",
"concurrency": 10,
"requests": 500,
"thinkTimeMs": 0,
"thresholds™: { "p95": 500, "errorRatePct": 1},
"profile": "steady"
}
Spike + Jitter (1eMmoHCcTpaNis CTpPUOKAa HABAHTAKEHHS)
{
"engine™: "native",
"target™: "http://localhost:9090/work?delay=90&jitter=80&fail=0.02",
""concurrency”: 5,
"durationMs": 30000,
"profile™: "spike",

"baseConcurrency": 5,

37

"spikeConcurrency": 40,
"thresholds™: { "p95": 900, "errorRatePct": 2 }
}
Traffic Mix (browse / detail / buy) 3a 30 cexynn
{
"engine": "native",
"concurrency"': 12,
"durationMs": 30000,
"mix": [
{ "weight": 70, "request": { "target": "http://localhost:9090/work?delay=80", "method": "GET" } },
{ "weight": 20, "request": { "target": "http://localhost:9090/work?delay=120&jitter=50", "method":
"GET"}},
{ "weight": 10, "request": { "target": "http://localhost:9090/work?delay=150&fail=0.03", "method":
"POST",
"headers": { "Content-Type": "application/json™ }, "body": "{\"id\":\"123\"}" } }
1
"thresholds™: { "p95": 800, "errorRatePct": 1.5}
}

Flow: login — data 3 ekcTpakui€lo TOKeHa
{

"engine": "native",

""concurrency': 3,

"durationMs": 15000,

"steps”: [
{
"name": "login",
"request": {

"target": "http://localhost:9090/work?login=1&delay=120",
"method": "POST",
"headers": { "Content-Type": "application/json" },
"body": "{\"user\":\"u\" \"pass\":\"p\"}"
h
"extract": [{ "var": "token", "path": "token" }],
"thinkTimeMs": 100

"name": "data",

"request”: {

38

"target": "http://localhost:9090/work?data=1&auth={{token}}&delay=80&jitter=40",
"method": "GET"

}
"thinkTimeMs": 50

}
1
"iterations": 3,
"thresholds™: { "p95": 850, "errorRatePct": 1}

}

Tunogi crieHapii 3axXucTy

Ha 3axucTti 3pyyHO mMOKa3aTdh MPOTPEcCito: croyaTKy mpoctuii steady 13 3eleHOI0
SLA-miTkor10, nami spike 13 momiTHUM migiioMom p95 mif gac miky, motim flow-crienapiii 3
EKCTpaKIli€o 3MiHHOT, 1 HapemTi traffic-mix ans «OIM3bKOro 0 PeabHOCTD MPOQIIIO.
Vel 1l cueHapii MOXHa NOPIBHATH 4epe3 baseline-nmopiBHIHHS, 11100 TPOJEMOHCTPYBATH

PI3HMIIIO MK paHaMmH nipu 3MiH1 delay/jitter/fail abo mapameTpiB KOHKYPEHTHOCTI.

4.4. Po3noaijieHi areHTH HA MPaKTHII

Po3snogineni areatu B PerfBench -me nmerki Node.js-Bopkepu, ki mia’ € THYIOTHCS
no Control Plane, perynsprao naacumatots heartbeat, orpumyroth npusHavenss (claim),
BUKOHYIOTh HAaBAaHTKEHHSI JIOKAJILHO 1 oBepTatoTh bulk-merpuku. Taka cxema q03BOJISIE
TOPU30HTAJIBLHO MacmTabyBaTu TeHepallilo Tpadiky: KiJibKa areHTIB Ha PI3HUX BYy3Jax
napanenbHO «BIAMPAIlbOBYIOTE» YaCTKHU OJHOTO Tun.

Huxdye -MiHIMalbHUN, ane poOouuid MpUKJIaA areHTa. BiH JeMOHCTpye MOBHUMN
UK register — heartbeat — claim — execute — metrics/bulk — complete, miaTpumye

graceful-shutdown i1 npoctuii backoff Ha momukax.

import fetch from "node-fetch";

import { setTimeout as sleep } from "timers/promises";

Il === Hanawmyeanns ===

const CONTROL = process.env.CONTROL || "http://localhost:8080/api/v1";

const AGENT_NAME = process.env.AGENT_NAME || “agent-${Math.random().toString(16).slice(2, 7)} ;
const CAPACITY = Number(process.env.CAPACITY || 50); // ymosna maxcumansrua concurrency

const HEARTBEAT_MS =5_000;

const CLAIM_INTERVAL_MS = 2_000;
const BULK_FLUSH = 100; // raocuramu mempuxu xoxcni N 3anumie

let running = true;

Il === Cman acenma ===

let agentld: number | null = null;

/I Graceful shutdown
process.on("SIGINT", () => (running = false));
process.on("SIGTERM", () => (running = false));

I HTTP ymunima 3 npocmum retry/backoff
async function http<T = any>(url: string, init?: any, tries = 3, delay = 500): Promise<T> {
for (leti=0; i <tries; i++) {
try {
const res = await fetch(url, init);
if (Ires.ok) throw new Error("${res.status} ${res.statusText});
return (await res.json()) as T;
} catch (e) {
if (i === tries - 1) throw e;
await sleep(delay * (i + 1));
}
}
Il @ts-ignore
return null;

}

async function register() {
const payload = { name: AGENT_NAME, capacity: CAPACITY };
const data = await http<{ id: number }>(${CONTROL}/agents/register, {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify(payload),
b
agentld = data.id;
console.log("[agent] registered id=${agentld} name=${AGENT_NAME} cap=${CAPACITY}");

39

async function heartbeatLoop() {
while (running && agentld) {
try {
await http("${CONTROL}/agents/${agentld}/heartbeat’, {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ id: agentld }),
b;
} catch (e) {
console.warn("[agent] heartbeat failed:", (e as Error).message);
}
await sleep(HEARTBEAT_MS);
}
}

type Assignment = {
id: number;
runld: number;
concurrency: number;
requests?: number;
durationMs?: number;

spec: any; // JSON cyenapiro, cnpoweno

async function claim(): Promise<Assignment | null> {

if ('agentld) return null;
try {

const data = await http<{ assignment?: Assignment }>("${CONTROL}/agents/${agentld}/claim’, {

method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ id: agentld }),
b
return data.assignment ?? null;
} catch (e) {
console.warn(*'[agent] claim error:", (e as Error).message);

return null;

}
}

40

41

type Metric = { createdAt: number; elapsedMs: number; status: number };

type Failure = { createdAt: number; elapsedMs: number; status: number; body?: string };

// Hpumimuenutt HTTP suxonaseys (6e3 3aiisux 3anedxicHocmett)
async function doHttp(req: any): Promise<{ elapsedMs: number; status: number; body?: string }> {
const { target, method = "GET", headers, body } =req || {};
const t0 = Date.now();
try {
const res = await fetch(target, { method, headers, body });
const text = await res.text().catch(() =>"");
return { elapsedMs: Date.now() - t0, status: res.status, body: text };
} catch (e) {
// mepedicesi NOMUIKY KOOy HeMaroms — YMOHO ()

return { elapsedMs: Date.now() - t0, status: 0, body: String(e) };

}
}

Il Buxonanns konkpemmnoeo assignment
async function executeAssignment(a: Assignment) {
const runld = a.runld;
const spec = a.spec || {};
const conc = Math.min(a.concurrency ?? 1, CAPACITY);
const endAt = a.durationMs ? Date.now() + a.durationMs : null;

let left = a.requests ?? Infinity;

const metrics: Metric[] = [];

const failures: Failure[] = [];

async function flush() {
if ('metrics.length && !failures.length) return;
try {
await http("${CONTROL}/runs/${runld}/metrics/bulk’, {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ metrics: metrics.splice(0), failures: failures.splice(0) }),
D;
} catch (e) {

42

console.warn("'[agent] bulk failed:", (e as Error).message);

// He Oponaemo -3amumaemo 6 Oyghepax, cnpoOyeMo HaACMynHO20 pasy

}
}

// npocma cmpamezis: napanenvHi «8opKepuy dcenyms abo 0o aimimy 3anumis, abo 00 uacy
const workers = Array.from({ length: conc }, async () => {
while (running && (left > 0) && ('endAt || Date.now() < endAt)) {
const reqSpec = pickRequest(spec);
const res = await doHttp(reqSpec);
const point: Metric = { createdAt: Date.now(), elapsedMs: res.elapsedMs, status: res.status };

metrics.push(point);

if (res.status === 0 || res.status >= 400) {

failures.push({ createdAt: point.createdAt, elapsedMs: point.elapsedMs, status: res.status });

}

if (Number.isFinite(left)) left--;
if (metrics.length + failures.length >= BULK_FLUSH) await flush();

const think = spec.thinkTimeMs ? Number(spec.thinkTimeMs) : 0;
if (think) await sleep(think);
}
D;

await Promise.all(workers);

await flush();

I nosioomnsiemo Control Plane npo sasepuenns assignment
try {
await http('${CONTROL}/agents/${agentld}/complete/${a.id}", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ notes: “done by ${AGENT_NAME} }),
h;
} catch (e) {

console.warn("'[agent] complete failed:", (e as Error).message);

}

43

Il Bubip sanumy 3i Spec: abo ¢ mix[], abo steps[0], abo bazosuii request
function pickRequest(spec: any) {
if (Array.isArray(spec?.mix) && spec.mix.length) {
const sum = spec.mix.reduce((s: number, m: any) => s + (m.weight || 0), 0) || 1;
let r = Math.random() * sum;
for (const m of spec.mix) {
r -= m.weight || 0;
if (r <= 0) return m.request;
}
return spec.mix[0].request;
}
if (Array.isArray(spec?.steps) && spec.steps.length) {

return spec.steps[0].request; // y minimansuit eéepcii icnopyemo excmpaxyiolmemnaeiimune

}

return {
target: spec.target,
method: spec.method || "GET",
headers: spec.headers,
body: spec.body,
b
}

async function main() {
await register();

heartbeatLoop(); // 6ez await -horoso

while (running) {
const a = await claim();
if (a) {
console.log(‘'[agent] got assignment #${a.id} run=${a.runld} conc=%{a.concurrency}
req=${a.requests ?? "-"} dur=${a.durationMs ?? "-"});
try {
await executeAssignment(a);
} catch (e) {
console.error("[agent] assignment failed:", (e as Error).message);

}

44

}else {
await sleep(CLAIM_INTERVAL_MS);

}
}

console.log(""[agent] stopped™);

}

main().catch(e => {
console.error(e);
process.exit(1);
D
3amyck Takoro BOpKepa JTOCTATHbO MPOCTHI:

Bapianm 1: noxanvho

CONTROL=http://localhost:8080/api/vl AGENT_NAME=node-a CAPACITY=80 node dist/worker.js

Bapianm 2. Kinbka azenmis na 0OHIU MAWUHI
AGENT_NAME=al node dist/worker.js &
AGENT_NAME=a2 node dist/worker.js &

Bapianm 3: Docker (ecki3)
docker run -e CONTROL=http://host.docker.internal:8080/api/vl -e AGENT_NAME=docker-a -e
CAPACITY=120 your/agent:latest

3 6oky Control Plane yce Burmsnae mposzopo. Ilicis 3amycky areHTIB MOXKHA
ctBoputH run (uepe3 Ul a6o API). Skmio aktuBHi arentu €, Control Plane «Hamapaute»
3aBAaHHS y TaOJNMIO run_assignments, 1 KOKeH areHT 3a0epe cBiil mmatok. Ilig yac
BUKOHAHHS METpPUKM Oy(epHu3yroThCs Ta BIANPABIAOTbCS Ha eHAnoiHT POST
/api/v1/runs/:id/metrics/bulk, 1m0 cyTTEBO 3MEHIIIye HAKIaAH1 BUTPATH HA MEPEKY 1 3aInC
y B

Jst mBuakoi nepeBipku API 3 koHcomi:

Ilepeananymu 3apeccmposanux a2eHmia i NpUsHaA4eHHs
curl http://localhost:8080/api/v1l/agents
curl http://localhost:8080/api/v1/agents/assignments

Cmapm ad-hoc run 6es 36epesicenns cyenapiio
curl -X POST http://localhost:8080/api/v1/runs \
-H "Content-Type: application/json" \

45

-d
{""spec":{"engine":"native","target":"http://localhost:9090/work?delay=100","concurrency":40,"requests":4000}
y

VY nponakiH-cepeioBHUIll AOUUIBHO JOAATH KUIbKa MOKpAIeHb: KOHTPOJIb Yepru
assignment-iB 3a capacity, moBtopai cripobu moctaBku bulk 3 muckoBum Oydepom Ha
BUIIAZ0K BIAKIIOYECHHS MEpexi, TaliMayTH/OOpHBH JOBIUX 3alMTIB 1 OLIBII MIPOCYHYTHI
executor mis Steps 3 eKCTpakiliero/TeMIUIEHTHHIOM 3MiHHUX. [IpoTe HaBITh HaBEICHHIA

MIHIMYM J103BOJISIE TIOBHICTIO BIJAMPAIIOBATH PO3MOAUICHUH 3amyck 1 310paTu KOPEKTHI

arperatu p95/throughput/error rate ma Control Plane.

4.5. IacTpyKuis 1J151 KOpUCTyBa4ya

1. T'onoBHa cTopiHka (IuB. puc. 4.1)
1.1. OcHoBHuit iHTEpDEiic

o [Ilicns 3anmycky KopucTyBad MOTpAIUIsie Ha TOJIOBHY CTOpiHKY cuctemu PerfBench.

o Y BEepXHLOMY MEHIO JIOCTYITHI OCHOBHI po3auin: I'osioBHa, [lla6aouu, IlocioHuk.

« Ha cropinui BimoOpaxaeTbcs craryc OekeHAy (IHOUKATop «ok» y mnpaBomy
BEPXHBOMY KYTI).

o Hwxye momaHo KOPOTKHII OMUC MOXJIMBOCTEH: CTBOPEHHS CIIEHApIiB, 3aIlyCK
TECTIB, aHAJIITUKA PE3YJIbTATIB.

o JlomarkoBo mpencrtaBnenuit 0ok «llBuakuii crapT (5 KpOKiB)» 13 MOETAIHOIO

IHCTPYKIII€IO, IO IONTIOMAarae HOBUM KOPUCTYBadaM IIBUIKO PO3MOYaTH POOOTY.

46

Ljimonmit URL

https://exampie org

Mevoq

Meroq

OET

Jaronomn (JSON)

AoasTy y Mikc

Mayse mbx sanwramm (sc)

0

Noporw (SLA) (JSON) Kpoun cuomapho (JSON)

4 Creopumn cuewapiit @ BuxopucTaTh AemMO-Lins B Nepeimv go wabnowia

Pucynok 4.1 -I'osoBHa cropinka iHcTpymenty PerfBench

2. CTBOpeHHs cueHapiw (auB. puc. 4.2)
2.1. Kondoirypaiist mapameTpis

o VY posaini «CTBOpPHUTH CIIEHapii» KOPUCTyBad 3a7a€ OCHOBHI MMapaMeTpHU: Ha3BY,
umeoBuit URL, merox (GET, POST Ttomo), pywiit (native um k6), pexum
(KUTIBKICTP 3aITUTIB a00 TPHUBAIICTB).

o € MOXJUBICTh 00paTu npodinbs HaBaHTaxeHHs: steady, ramp uu spike.

o JlomaTtkoBl mojs O3BOJSIOTH HANAIITYBAaTH KOHKYPEHTHICTh, KUIBKICTh 3aIWTIB,

SLA-noporu (Hampukiaf, p95 < 500 mc), may3y Mix 3anutamu Ta flow-kKpoxwu.

3. Cuenapii Ta 3anycku (1uB. puc. 4.3)

47

Jl7i cKIIaAHUX CIIeHapiiB JOCTyNMHHUM «MIKC 3aMuTiB» 13 BATOBUMH KOe(illiEHTaMU.

2.2. JIii kopuctyBaua

[Ticyist 3aroBHEHHS TOJIIB MOYKHA 30€perTy ClieHapid, BUKOPUCTATH JAEMO-IIIIIb a00

nepeiTH 10 MabIoHIB.

VY HwkHIN yacTuHi Gopmu BimoOpaxaeThcsi 3reHepoBanuit JSON-cnenudikaris,

AKy MOYKHA pe/laryBaTH BPYUHY.

#15 Demo POST

#14 Ramp profile

#12 Ramp profile

#£11 Ramp profile

Craryc

ac

M fevani W 3ynmomn

scenario=15 status=completed started=2025-09-27 12:52:50

finished=2025-09-27 12:52:52

M ferani o SynmnTu

scenario=14 status=running started=2025-09-27 12:50:31 finished=

W fevani o 3ynumuru W Bupanwrm #17
scenario=14 status=running started=2025-09-27 12:50:23 finished=

M Oerani ® Synmumu W Buganutw #16

scenario=13 status=completed started=2025-09-27 12:00:48
finished=2025-09-27 12:00:49

M ferani w 3ynwawmu W Buganwm #15

scenario=12 status=completed started=2025-09-27 11:54:44
finished=2025-09-27 11:54:57

M ferani w 3ynmmTn W Buganurm #14

scenario=11 status=completed started=2025-09-27 11:54:12
finished=2025-09-27 11:54:24

Pucynox 4.2 -CtopiHka CTBOPEHHS CIIEHApPii0

3.1. PoGorta 31 crieHapisimMu

VY pozaum «Cuenapii» BijoOpaxaeThCsi CIUCOK YCiX 30epeXeHrX KOHPIryparliil.

48

bins xoxHoro crenapito moctymHi kHonku: IloyaTm mporin (3amyck Tecty) Ta
Bupaautu.

3.2. Po6ora 13 3amyckaMu

Y HWKHBLOMY OJIOII TIOKa3aHl BCl CTBOPEHI 3aIyCKH 13 3a3HAYEHHSM iX CTaTyCy:
running, completed uu failed.

Kosen 3anyck mae knonku deraJi, 3ynuuutu ta Bugaaurm.

VY maneni npaBopyd BIAKPUBAIOTHCS J€Tall KOHKPETHOTO 3aIyCKY.

Pucynox 4.3 -Po3nin ciieHapiiB Ta 3amycKiB

49

HIadsonu (quB. puc. 4.4)

4.1. BukopuctaHHsl TOTOBHUX MPECETIB

Poznin «llla6nonu» Mmictuth Habip tunoBux koHdirypamiii: Demo GET, Ramp,
Spike, Stress, Flow checkout, Traffic mix Tomro.

KokeH 1m1a610H CypoBOIKYETHCSI OTUCOM: HaIlpuKiaj, Spike 1eMOHCTpye pi3Kui
cTpUOOK HaBaHTaxeHHs, a Traffic mix Mojenoe TMOBEAIHKY peaTbHUX
KOPHCTYBaYiB.

KopuctyBau moske 3acTtocyBaTH IIabJIOH HATUCKAHHSIM KHOIKM «3acTOCYyBaTH
1a0JI0H».

4.2. CTBOpEHHS BJIaCHUX MPECETIB

VY HWXKHIN 4YacTUHI CTOPIHKU € (opma miisa 30epexeHHs BIACHUX CIIEHApIiB K

MIPECeTiB, 13 Ha3BOIO, onrcoM 1 JSON-cnenudikaiiero.

Pucynok 4.4 -Cropinka mabioHiB

50

5. IMocioHuk kopucryBaya (IuB. puc. 4.5)
5.1. Ornsan pyHKIin

e Pozmin «llociOHUK» MICTUTH 3araibHUIl omuc MoxiauBocTeil PerfBench: mBumgke
CTBOPEHHSI CIICHApiiB, aHaJiTHKa pe3ylbTaTiB, MIATPUMKA pPi3HUX MOpodiTiB
HABaHTAYKEHHS.

o Tyt nHaBeneno mepeaymoBu s 3amycky (Node.js, demo target, k6) Ta KOpOTKYy
THCTPYKIIIIO 3 BAKOPUCTaHHSI.
5.2. llIBuakuii cTapT

o OxpemuM OJIOKOM TIPEACTABICHO 5 KPOKIB JIJIS 3aIyCcKy TecTy: Bif BimkputTsa Ul go

aHaji3y pe3yJbTarTiB.

» Cneundixauin cuewapso (Spec)

Pucynok 4.5 -ITociOHUK KOpUCTyBaya

51

JeraJii 3anycky (amB. puc. 4.6)

6.1. AHaiTuka pe3yibTaTiB

Cropinka aetaniel 3alyCKy MICTHTh KJIFO9OB1 MeTpuku: p50, p95, p99, throughput,
KUIbKICTh TOMHJIOK Ta €rTor rate.

SLA-moporn Bi3yaJbHO IIO3HAYAIOThCS 3€lICHUM (YCHIITHO) YW YEPBOHUM
(mopy1eHo).

6.2. Bizyamizariis qaHux

I'padixu BimoOpaxkaroTh 3MiHY 3aTPUMKH, IPOITYCKHOI 3JaTHOCTI Ta YacTOTH
MIOMUJIOK Y Yaci.

JlolaTKOBO JOCTyIHA TiCTOrpaMa 3aTPUMOK 1 CHHCOK OCTaHHIX TOMHUIIKOBUX
3aIuUTIB.

PesynbraTti MokHa excrioptyBatu y popmar CSV.

Pucynox 4.6 -/[emani 3anycky 3 aHanimuko0

JeMo-mijb (muB. puc. 4.7)
7.1. IlpuzHadyeHHS

JleMo-1ip -11€ BOyJAOBaHUU CepBIC ISl TEPEBIpKU pPOOOTH 1HCTPYMEHTY 0O€3
[T IKJTFOYEHHS 0 30BHIMIHIX CUCTEM.

Bin no3Bossie 3anaBatu mapamerpu: delay (3atpuMmka y mc), jitter (BapiaTUBHICTB) 1
fail (MMOBIPHICTH MOMMUIIKH).

7.2. ITntepdetic

Ha cropinmi BigoOpaxaroTbCs *UBI Trpaiku 3aTPUMKH, CTAaTUCTHKA 3alUTIB
(KUIBKICTh YCHIIIHKUX 1 3 TOMUJIKAMM), CEPEJIHI 3HAYEHHSI Ta MEPLICHTHUIII.

VY HmwKHBOMY OJIOIII HABEACHUW CIHCOK OCTAHHIX 3aIllMUTIB 13 YaCOM BHUKOHAHHS 1

KOJaMH BIJITOBIII.

52

Demo Target

NapameTpu: delay — satpumka y mc; fall — imosipHicTs nomunku (0.1). Hanp.: 2delay=1888ail=a.85

M¥Muea saTpumka Crarncruka

Uptime: 1: Bonoro: 222
Mossemxm: 5.4 Cepepnn:

Ocrammi 10¢:

OcTasmi nogii

Pucynox 4.7 -JlemMo-11171b AJ1 EPEBIPKU HABaHTAKCHHS

Takum uunoMm, iHTepdeiic PerfBench € iHTYiTUBHMM 1 HAaOYHHMM: BIH JI03BOJISIE
JIETKO CTBOPIOBATU CIIEHApii, 3amycKaTd HaBaHTaXyBaJlbHI TECTH, aHaJi3yBaTH

pe3yJbTaT B peaJIbHOMY Yaci Ta eKCIOPTYBAaTH AaH1 ISl OJAJbIIOT 0OPOOKH.

53

BUCHOBKHA

VY XoJli BUKOHAHHS AMIIOMHOI poboTu Oyno po3pobieno inctpyment PerfBench
JUTsl aBTOMATHU3allll TeCTyBaHHS MPOAYKTUBHOCTI BEO-10AATKIB, SIKUI TIOETHYE TIPOCTOTY
HAJIAIITYBAaHHS, THYYKICTh CLIEHAPiiB Ta MATPUMKY pO3MOAUIEHUX cepeaoBull. Cucrtema
JI03BOJISIE TIIBUIKO CTBOPIOBATH CIICHApii HaBaHTAXEHHS, 3alyCKaTH iX Ha JEKUTbKOX
areHTax 1 aHaJi3yBaTH pe3yJIbTaTH y 3py4YHOMY iHTepdeici.
OCHOBHI pe3yNbTaTH POOOTH BKIIOYAIOTH:
1. AHaii3 ICHYIOUMX MJIXOMAIB Ta IHCTPYMEHTIB
o IlpoBeneHo ormisia cyyacHUX pillieHb JIJISl HABAHTAKYBaJIbLHOTO TecTyBaHHs (Apache
JMeter, k6, Locust).
o Busnaueno ixHi cuJBHI Ta clIadKi CTOPOHH, IO JaJO 3MOTY OOIPYHTYBaTu
CTBOPCHHSI BJIACHOTO IHCTPYMEHTY.
o Cdopmonano niepenik mMeTpuk Ta SLA-kputepiiB (p95, throughput, error rate), o
BUKOpHUCTOBYIOThCS B PerfBench aiis omninku npoayKTHBHOCTI.
2. IlpoexTyBaHHS apXiTEKTypH
o CtBOpeHO MOAYIBHY CTpyKTypy 3 mnoaiiom Ha Control Plane (6exenn), Ul Tta
arcHTH.
o llepenbaueHo MOMUIMBICTH TOPU3OHTAJIBHOTO MacIITaOyBaHHS 3aBISKHU
MIKJIFOYEHHIO TOJAaTKOBUX areHTIiB.
« 3ale3mneueHo MIATPUMKY K BOyAOBaHOTO pyiis (native), Tak 1 inTerpariii 3 k6.
3. Peamizarisa GyHKIIIOHATEHUX MOKIUBOCTEN
o Pospobneno 3pyunuii BeO-iHTepdeic i CTBOPEHHS CIIEHAPIiB 13 BUKOPUCTAHHSIM
JSON-cnemudikartiu.
o PeanizoBano roroBi ma0ioHu HaBaHTakeHHs: steady, ramp, spike, stress, traffic
mix, flow-cuenapii.
o Jlomano momyne 300py Ta Bi3yauiszallli pe3yibTaTiB y peajbHOMY 4aci: 3aTpUMKa,
MPOITYCKHA 37aTHICTh, YaCTKa MOMUJIOK.
o PeanizoBaHo MOXIUBICTH ekcnopTy JaHux y dopmar CSV mid mojganbmioro

aHami3y.

54

4. PosmnomaisieHe BUKOHAHHS TECTIB
o CrBopeno nerki arentd Ha Node.js, siki miakmoudatotbes 10 Control Plane Ta
BUKOHYIOTH NPU3HAYCHHS.
o 3abesmeueHo BiampaBieHHS MeTpuk y bulk-pexumi, 1o 3MeHITye HaKJIaIHI
BUTpATH.
« PeanizoBano heartbeat-mexaHi3m 1 KOHTPOJIb AKTUBHUX arcHTIB.
5. Intepdetic kopuctyBaua
o Pospo6neno intyitusHuii Ul 3 po3ainamu: «Cuenapii», «3amycku», «llladbmoHuny,
«ITociOHUKY.
o CrBopeHo iuTerpoBaHuii demo-target, sKuil 103BOJIAE TEPEBIPUTH POOOTY
IHCTPYMEHTY 0€3 30BHIIIIHIX CEPBICIB.
o 3amporoHOBaHO MOKPOKOBY 1HCTPYKUIIO «IIIBUIKMI cTapT», IO POOUTH CHCTEMY
JOCTYITHOIO HABITh JIJISl TOYATKIBIIIB.
Po3po6nennii IHCTpyMEHT J103BOJISE:
e MOJENIOBATH Pi3HI MPOQ1Il HABAHTAXKEHHS Ta KOPUCTYBAIIbKI CLIEHAPI;
e BIJCTEXYBaTU MPOJYKTUBHICTH BEO-I0aTKIB Y peaIbHOMY 4aci;
e IIBUJKO BUSBISATU MPOOJIEMU MACIITA0OBAHOCTI M CTaO1IBLHOCTI;
e aBTOMATHU3yBaTH MPOIEC TECTYBaHHS y PO3IMOAIIICHOMY CEPEIOBHIIL.
Po3pobka miaTBepania eeKTUBHICTh BUKOPUCTAHHS BJIACHOTO 1HCTPYMEHTY JJIst
HaBaHTaxyBajdbHOro TecTyBaHHs: PerfBench mnoennaB mnpoctoty iHTepdeiicy,
MO>KJIMBICTh MacIITaOyBaHHS Ta aBTOMATHU3AIIIO MPOIIECY, [0 POOUTH HOr0 KOPUCHUM

K J1JI1 PO3POOHUKIB, TAK 1 JIs IHKEHEPIB 13 3a0€3M€UEHHS SIKOCTI.

55

CIIMCOK THOOPMAIIVMHUX JI)KEPE.I

1. Apache JMeter. User Manual. InTepuer-moctymn:
https://jmeter.apache.org/usermanual/

2. Grafana Documentation. Metrics, Dashboards and Visualization. InTepHer-mocTym:
https://grafana.com/docs/

3. Prometheus Documentation. Monitoring System and Time Series Database.
InTepuer-noctym: https://prometheus.io/docs/

4, Node.js Documentation. IaTeprer-goctyi: https://nodejs.org/en/docs/

5. k6 Load Testing Tool. Documentation. [aTepaeT-noctym: https://k6.10/docs/

6. Locust Documentation. Scalable User Load Testing. IHTepHET-HOCTYII:
https://docs.locust.io/

7. Docker Documentation. Build and Run Containers. IHTepHET-AOCTYII:
https://docs.docker.com/

8. PostgreSQL Documentation. Database System. [HTEpHET-NOCTYM:
https://www.postgresgl.org/docs/

0. React Documentation. A JavaScript library for building user interfaces. Inrepuer-
nocty: https://react.dev/

10. TypeScript Documentation. Strongly typed JavaScript. IntepHer-mocTym:
https://www.typescriptlang.org/docs/

11. Fetch API Documentation. Intepner-moctym: https://developer.mozilla.org/en-
US/docs/Web/API/Fetch_API

12. Apache Kafka Documentation. Distributed Streaming Platform. [aTepner-noctym:
https://kafka.apache.org/documentation/

13. OmnbxoBcebka O. B. Mertonuyni pekoMeHaamii 10 BUKOHAHHS KBamiQiKamiifHOT
poOOTH Il CTyAEHTIB cremiaibHOcTI 122 Komm’toTepHi HaykM OCBITHS Mporpama
«Komm’torepni Hayku» crtyneHs OakamaBpa / O. B. OnbxoBckka, O. O. UepHeHKo. -

[MTonTasa : ITYET, 2024. -67 c. -1 enektpoH. ont. quck (CVD-ROM).

TIOJIATOK A.

import express = require(‘express’)

import cors = require(‘cors")

import { Database } from 'better-sglite3'

import createDb = require('./store’)

import { scenariosRouter } from './routes/scenarios'
import { runsRouter } from './routes/runs’

import { presetsRouter } from './routes/presets’

import { agentsRouter } from "./routes/agents’

const app = express()
app.use(cors())

app.use(express.json({ limit: '2mb' }))

let db: Database

app.get(‘/health’, (_req, res) =>{
res.json({ status: 'ok' })

by,

app.use(‘/api/fvl/scenarios', scenariosRouter(() => db))
app.use(‘/api/vl/runs', runsRouter(() => db))
app.use('/apifvl/presets’, presetsRouter(() => db))
app.use(‘/api/vl/agents', agentsRouter(() => db))

const port = process.env.PORT || 8080

async function start() {
db = createDb('perfbench.db’)
const server = app.listen(port, () => {
console.log("server listening on http://localhost:${port}’)

by,

process.on('SIGINT', () => server.close())

}

start().catch(err =>{

console.error(err)

56

process.exit(1)

by,

backend/src/store.ts

“typescript
import DatabaseConstructor, { Database } from 'better-sglite3'

export = function createDb(path: string): Database {
const db = new DatabaseConstructor(path)
db.pragma(‘journal_mode = WAL")
db.exec("
create table if not exists scenarios (
id integer primary key autoincrement,
createdAt text not null default (datetime('now")),
updatedAt text not null default (datetime(‘'now")),
name text not null,
description text,
spec text not null
);
create table if not exists runs (
id integer primary key autoincrement,
createdAt text not null default (datetime('now")),
updatedAt text not null default (datetime('now")),
scenariold integer not null,
status text not null,
startedAt text,
finishedAt text,
notes text,
foreign key (scenariold) references scenarios(id)
);
create table if not exists metrics (
id integer primary key autoincrement,
createdAt text not null default (datetime(‘'now")),
runld integer not null,
elapsedMs integer not null,

status integer not null,

foreign key (runld) references runs(id)
);
create table if not exists failures (
id integer primary key autoincrement,
createdAt text not null default (datetime('now")),
runld integer not null,
status integer not null,
elapsedMs integer not null,
body text,
foreign key (runld) references runs(id)
);
create table if not exists presets (
id integer primary key autoincrement,
createdAt text not null default (datetime('now")),
name text not null,
description text,
spec text not null
);
create trigger if not exists scenarios_update_ts after update on scenarios begin
update scenarios set updatedAt = datetime('now') where id = NEW.id; end;
create trigger if not exists runs_update_ts after update on runs begin
update runs set updatedAt = datetime('now') where id = NEW.id; end;
create table if not exists agents (
id integer primary key autoincrement,
name text not null,
capacity integer not null default 1,
lastHeartbeat text not null default (datetime(‘'now")),
status text not null default ‘idle’
);
create table if not exists run_assignments (
id integer primary key autoincrement,
runld integer not null,
agentld integer not null,
concurrency integer not null default 1,
requests integer,
durationMs integer,
status text not null default ‘queued’,
startedAt text,

58

finishedAt text,
foreign key (runld) references runs(id),
foreign key (agentld) references agents(id)
);
)
return db

}

import { Router } from 'express'
import { Database } from 'better-sglite3'

import { z } from 'zod'

export function scenariosRouter(getDb: () => Database) {

const r = Router()

r.get('/", (_req, res) =>{
const rows = getDb().prepare('select * from scenarios order by id desc").all()

res.json(rows)

by,

const CreateSchema = z.object({
name: z.string().min(1),
description: z.string().optional().default(™),
spec: z.string().min(2),

by,

r.post(’/', (req, res) =>{
const parsed = CreateSchema.safeParse(reg.body)
if ('parsed.success) return res.status(400).json({ error: parsed.error.message })
const { name, description, spec } = parsed.data
const stmt = getDb().prepare('insert into scenarios (hame, description, spec) values (?, ?, ?))
const info = stmt.run(name, description, spec)
const row = getDb().prepare('select * from scenarios where id = ?').get(info.lastInsertRowid)

res.status(201).json(row)

by,

r.get('/:id', (req, res) => {
const row = getDb().prepare(‘select * from scenarios where id = ?").get(+reg.params.id)

59

if ('row) return res.status(404).json({ error: 'not found' })

res.json(row)

by,

r.delete('/:id", (req, res) => {
getDb().prepare('delete from scenarios where id = ?).run(+req.params.id)
res.status(204).end()

by,

return r

import { Router, Request, Response } from ‘express'
import { Database } from 'better-sglite3'

import { z } from 'zod'

import { fetch } from ‘undici'

import { EventEmitter } from 'events'

import { spawn } from ‘child_process'

import * as fs from 'fs'

import * as os from 'os’

import * as path from "path’

export function runsRouter(getDb: () => Database) {

const r = Router()

r.get(/", (req, res) => {
const db = getDb()
const where: string[] =[]
const params: any[] =[]
const status = String(reg.query.status || *).trim()
const scenariold = Number(req.query.scenariold || 0)
const offset = Math.max(0, parselnt(String(req.query.offset ?? '0)) || 0)
const limit = Math.min(200, Math.max(1, parselnt(String(reg.query.limit ?? '50")) || 50))
if (status) { where.push('status = ?'); params.push(status) }

if (scenariold) { where.push('scenariold = ?"); params.push(scenariold) }

60

const sgl = “select * from runs ${where.length?('where '+where.join(* and ")):"} order by id desc limit ? offset ?°

const rows = db.prepare(sgl).all(...params, limit, offset)

61

const total = db.prepare(‘select count(*) as c¢ from runs ${where.length?('where '+where.join(' and
):"}).get(...params) as any
res.json({ total: total.c as number, items: rows })

by,

r.get('/:id', (req, res) => {
const row = getDb().prepare('select * from runs where id = ?").get(+reg.params.id)
if ('row) return res.status(404).json({ error: 'not found' })

res.json(row)

by,

r.delete('/:id", (req, res) =>{
const runld = +reg.params.id
const db = getDb()
db.prepare(‘delete from metrics where runld = ?").run(runld)
db.prepare(‘delete from failures where runld = ?").run(runld)
db.prepare(‘delete from runs where id = ?").run(runld)
res.status(204).end()

by,

const StartSchema = z.object({ scenariold: z.number() })

r.post(’/', async (req, res) => {
const parsed = StartSchema.safeParse(req.body)
if ('parsed.success) return res.status(400).json({ error: parsed.error.message })
const { scenariold } = parsed.data
const db = getDb()
const info = db.prepare("insert into runs (scenariold, status, startedAt) values (?, ‘running’,
datetime(‘'now"))").run(scenariold)

const runld = Number(info.lastInsertRowid)

const agents = db.prepare(‘select * from agents order by id asc').all() as any[]
if (agents && agents.length > 0) {
const scenario = db.prepare(‘select * from scenarios where id = ?").get(scenariold) as any
let spec: any = {}
try { spec = JSON.parse(scenario.spec) } catch {}
const num = agents.length

if (spec && spec.requests) {

62

const per = Math.max(1, Math.floor(spec.requests / num))
let remaining = spec.requests
for (const a of agents) {
const r = Math.min(per, remaining)
if (r <=0) break
db.prepare(*insert into run_assignments (runld, agentld, requests, concurrency, status) values (?, ?, ?, ?,
‘queued')").run(runld, a.id, r, Math.max(1, Math.floor((spec.concurrency|[num)/num)))
remaining -=r
}
}else {
const perC = Math.max(1, Math.floor((spec.concurrency || num) / num))
for (const a of agents) {
db.prepare("insert into run_assignments (runld, agentld, durationMs, concurrency, status) values (?, ?, ?, ?,
‘queued’)™).run(runld, a.id, Math.max(1000, spec.durationMs || 5000), perC)
}
}

db.prepare("update runs set status='running' where id = ?").run(runld)
}else {
setimmediate(() => executeRun(db, runld).catch(err => console.error('run error’, err)))

}

res.status(202).json(db.prepare(‘select * from runs where id = ?*).get(runld))

by,

r.post('/:id/stop’, (req: Request, res: Response) => {
const runld = +reg.params.id
const ctrl = runControllers.get(runid)
if (tctrl) return res.status(404).json({ error: 'run not found or already finished' })
ctrl.abort()

res.json({ ok: true })

)

r.get(’/:id/metrics’, (req: Request, res: Response) => {
const runld = +req.params.id
const offset = Math.max(0, parselnt(String(req.query.offset ?? '0)) || 0)
const limit = Math.min(5000, Math.max(1, parselnt(String(reg.query.limit ?? '200")) || 200))
const items = getDb().prepare(‘select id, createdAt, elapsedMs, status from metrics where runld = ? order by id
asc limit ? offset ?*).all(runld, limit, offset)

63

const totalRow = getDb().prepare('select count(*) as ¢ from metrics where runld = ?').get(runld) as any

res.json({ total: totalRow.c as number, items })

by,

r.get('/:id/metrics.csv', (req: Request, res: Response) ==> {

const runld = +req.params.id

const rows = getDb().prepare('select id, createdAt, elapsedMs, status from metrics where runld = ? order by id
asc').all(runld) as any[]

res.setHeader('Content-Type', 'text/csv; charset=utf-8")

res.setHeader('Content-Disposition’, “attachment; filename="run-${runld}-metrics.csv'")

res.write('id,createdAt,elapsedMs,status\n’)

for (const r of rows) {

res.write("${r.id},${r.createdAt},${r.elapsedMs},${r.status}\n")
}

res.end()

by,

const Bulk = z.object({ points: z.array(z.object({ elapsedMs: z.number().int().nonnegative(), status:
z.number().int(), createdAt: z.string().optional() })) })
r.post(’/:id/metrics/bulk’, (req: Request, res: Response) => {
const parsed = Bulk.safeParse(reg.body)
if ('parsed.success) return res.status(400).json({ error: parsed.error.message })
const db = getDb()
const stmt = db.prepare("insert into metrics (runld, createdAt, elapsedMs, status) values (?, ?, ?, 2)')
const now = new Date().tolSOString()
const runld = +reg.params.id
const tx = db.transaction((arr: typeof parsed.data.points) => {
for (const p of arr) {

stmt.run(runld, p.createdAt || now, p.elapsedMs, p.status)

}
D

tx(parsed.data.points)

res.json({ ok: true, inserted: parsed.data.points.length })

by,

r.get('/:id/summary’, (req: Request, res: Response) => {
const runld = +req.params.id
const db = getDb()

64

const run = db.prepare(‘select * from runs where id = ?").get(runld) as any

if ('run) return res.status(404).json({ error: 'not found' })

const scenario = db.prepare('select * from scenarios where id = ?').get(run.scenariold) as any

const rows = db.prepare('select elapsedMs, status from metrics where runld = ? order by id asc').all(runld) as
any[]

const lat = rows.map(r => r.elapsedMs as number).sort((a,b)=>a-b)

const count = lat.length

const errors = rows.filter(r => (r.status === 0) || (r.status >= 400)).length

const p = (g: number) => count ? lat[Math.min(count-1, Math.floor(q * (count-1)))] : 0

const p50 = p(0.50), p95 = p(0.95), p99 = p(0.99)

const started = run.startedAt ? new Date(run.startedAt) : new Date()

const finished = run.finishedAt ? new Date(run.finishedAt) : new Date()

const durationSec = Math.max(0.001, (finished.getTime() - started.getTime())/1000)

const throughput = count / durationSec

const errorRate = count? errors/count:0

let sla: any = undefined

try {
const spec = JSON.parse(scenario?.spec || '{}') as any
if (spec?.thresholds) {
sla={

p95Target: spec.thresholds.p95 ?? null,
p95Pass: spec.thresholds.p95 = null ? p95 <= spec.thresholds.p95 : null,
errorRatePctTarget: spec.thresholds.errorRatePct ?? null,
errorRatePctPass: spec.thresholds.errorRatePct !'= null ? (errorRate*100) <=
spec.thresholds.errorRatePct : null,
}

}
} catch {}

res.json({ count, errors, errorRate, p50, p95, p99, throughput, durationSec, sla })

)

r.get('/:id/stream’, (req: Request, res: Response) => {
const runld = +req.params.id
res.setHeader('Content-Type', 'text/event-stream")
res.setHeader('Cache-Control', 'no-cache’)
res.setHeader('Connection’, 'keep-alive")
res.flushHeaders?.()

const emitter = getRunEmitter(runid)

const onMetric = (data: any) =>{
res.write("data: ${JSON.stringify(data)}\n\n’)
}
emitter.on('metric’, onMetric)
reg.on(‘close’, () => {
emitter.off('metric', onMetric)
res.end()

)
by,

return r

}

type SimpleSpec = {

target: string

concurrency?: number

requests?: number

method?: string

body?: string

headers?: Record<string,string>

durationMs?: number

stages?: { durationMs: number; concurrency: number }[]

engine?: 'native’ | 'k6'

thinkTimeMs?: number

thresholds?: { p95?: number; errorRatePct?: number }

steps?: Array<{
name?: string
request: { target: string; method?: string; headers?: Record<string,string>; body?: string }
extract?: Array<{ var: string; path: string }>
thinkTimeMs?: number

}>

iterations?: number

vars?: Record<string,string>

profile?: 'steady’ | 'ramp’ | 'spike’

startConcurrency?: number

endConcurrency?: number

segments?: number

baseConcurrency?: number

66

spikeConcurrency?: number

mix?: Array<{ weight: number; request: { target: string; method?: string; headers?: Record<string,string>;
body?: string } }>
}

const runControllers = new Map<number, AbortController>()

async function executeRun(db: Database, runld: number) {
const run = db.prepare('select * from runs where id = ?*).get(runld) as any
const scenario = db.prepare(‘select * from scenarios where id = ?").get(run.scenariold) as any
const spec = JSON.parse(scenario.spec) as SimpleSpec

const method = (spec.method || 'GET").toUpperCase()

if (spec.engine === 'k6") {
await executeK6Run(db, runld, spec, method)
} else if (spec.steps && spec.steps.length) {
await executeFlow(db, runld, spec)
} else if (spec.stages && spec.stages.length) {
for (const stage of spec.stages) {
await runForDuration(db, runld, spec.target, method, spec.body, stage.concurrency, stage.durationMs,
spec.headers, spec.thinkTimeMs)
}
} else if (spec.profile) {
const stages = deriveStagesFromProfile(spec)
for (const st of stages) {
await runForDuration(db, runld, spec.target, method, spec.body, st.concurrency, st.durationMs, spec.headers,
spec.thinkTimeMs)
}
} else if (spec.durationMs && spec.durationMs > 0) {
const ¢ = Math.max(1, spec.concurrency ?? 1)
if (spec.mix && spec.mix.length) {
await runMixForDuration(db, runld, spec.mix, c, spec.durationMs, spec.thinkTimeMs)
}else {
await runForDuration(db, runld, spec.target, method, spec.body, c, spec.durationMs, spec.headers,
spec.thinkTimeMs)
}
}else {
const concurrency = Math.max(1, spec.concurrency ?? 1)

67

const requests = Math.max(1, spec.requests ?? 1)
const queue = Array.from({ length: requests }, (_, i) =>1)
async function workerRequests() {
while (queue.length) {
const _ = queue.pop(); if (_ === undefined) break
if (spec.mix && spec.mix.length) {
const r = pickMix(spec.mix)
const m = (r.method || 'GET").toUpperCase()
await singleRequest(db, runld, r.target, m, r.body, r.headers)
}else {
await singleRequest(db, runld, spec.target, method, spec.body, spec.headers)
}
}
}

const workers = Array.from({ length: concurrency }, () => workerRequests())
await Promise.all(workers)

}

db.prepare("update runs set status='completed', finishedAt=datetime(‘'now") where id = ?").run(runld)

}

async function runForDuration(db: Database, runld: number, target: string, method: string, body: string |
undefined, concurrency: number, durationMs: number, headers?: Record<string,string>, thinkTimeMs?: number)
{
const deadline = Date.now() + durationMs
async function worker() {
while (Date.now() < deadline) {
await singleRequest(db, runld, target, method, body, headers)
if (thinkTimeMs && thinkTimeMs > 0) await new Promise(r => setTimeout(r, thinkTimeMs))
}
}

const workers = Array.from({ length: Math.max(1, concurrency) }, () => worker())
await Promise.all(workers)

}

async function singleRequest(db: Database, runld: number, target: string, method: string, body?: string,
headers?: Record<string,string>, signal?: AbortSignal) {
const start = Date.now()

68

try {
const res = await fetch(target, { method, body, headers, signal })

const elapsed = Date.now() - start
db.prepare(insert into metrics (runld, elapsedMs, status) values (?, ?, ?)").run(runld, elapsed, res.status)
getRunEmitter(runld).emit('metric’, { elapsedMs: elapsed, status: res.status })
if (res.status >=400) {
const text = await res.text().catch(()=>")
db.prepare(insert into failures (runld, status, elapsedMs, body) values (?, ?, ?, ?)").run(runld, res.status,
elapsed, text.slice(0, 4096))
}else {

await res.arrayBuffer()
}
} catch {
const elapsed = Date.now() - start
db.prepare('insert into metrics (runld, elapsedMs, status) values (?, ?, 0)").run(runld, elapsed)

getRunEmitter(runld).emit('metric’, { elapsedMs: elapsed, status: 0 })

}
}

async function executeFlow(db: Database, runld: number, spec: SimpleSpec) {
const controller = new AbortController()
runControllers.set(runld, controller)
try {
const concurrency = Math.max(1, spec.concurrency ?? 1)
const iterations = Math.max(1, spec.iterations ?? 1)
let remaining = iterations * concurrency
const workers = Array.from({ length: concurrency }, () => flowWorker())
await Promise.all(workers)

} finally {
runControllers.delete(runid)

}

async function flowWorker() {
const vars: Record<string,string> = Object.assign({}, spec.vars || {})
while (remaining > 0 && !controller.signal.aborted) {
remaining--
for (const step of spec.steps || [1) {
const m = (step.request.method || 'GET").toUpperCase()

69

const url = template(step.request.target, vars)
const body = step.request.body ? template(step.request.body, vars) : undefined
const headers = step.request.headers ? Object.fromEntries(Object.entries(step.request.headers).map(([k,v])
=> [k, template(v, vars)])) : undefined
const start = Date.now()
try {
const res = await fetch(url, { method: m, body, headers, signal: controller.signal })
const elapsed = Date.now() - start
db.prepare(insert into metrics (runld, elapsedMs, status) values (?, ?, ?)").run(runld, elapsed, res.status)
getRunEmitter(runld).emit('metric', { elapsedMs: elapsed, status: res.status })
let text: string | undefined
if (res.status >= 400) {
text = await res.text().catch(()=>")
db.prepare(‘insert into failures (runld, status, elapsedMs, body) values (?, ?, ?, ?)").run(runld, res.status,
elapsed, (text||™).slice(0,4096))
}else {
text = await res.text().catch(()=>")
}
if (step.extract && text) {
const parsed = safeJson(text)
for (const ex of step.extract) {
const val = getByPath(parsed, ex.path)
if (val '= null) vars[ex.var] = String(val)
}

}
} catch {

const elapsed = Date.now() - start
db.prepare(‘insert into metrics (runld, elapsedMs, status) values (?, ?, 0)").run(runld, elapsed)
getRunEmitter(runld).emit('metric’, { elapsedMs: elapsed, status: 0 })

}

const tt = step.thinkTimeMs ?? spec.thinkTimeMs

if (tt && tt > 0) await new Promise(r => setTimeout(r, tt))

if (controller.signal.aborted) break

70

function template(str: string, vars: Record<string,string>) {
return str.replace(A{\M{(:*?)\I\}g, (_, k) => vars[k.trim()] ?? ")
}

function safeJson(text: string) { try { return JSON.parse(text) } catch { return {} } }
function getByPath(obj: any, path: string) {
if (lobj || 'path) return undefined
const parts = path.split('.").filter(Boolean)
let cur: any = obj
for (const p of parts) { if (cur && typeof cur === "object' && p in cur) cur = cur[p]; else return undefined }

return cur

function deriveStagesFromProfile(spec: SimpleSpec): Array<{ durationMs: number; concurrency: number }> {
const total = Math.max(1000, spec.durationMs ?? 0)
const segs = Math.max(1, spec.segments ?? 5)
if (spec.profile === "steady’) {
const ¢ = Math.max(1, spec.concurrency ?? 1)
return [{ durationMs: total, concurrency: ¢ }]
}
if (spec.profile === "ramp") {
const start = Math.max(1, spec.startConcurrency ?? spec.concurrency ?? 1)
const end = Math.max(1, spec.endConcurrency ?? start)
const per = Math.floor(total / segs)
const stages: Array<{ durationMs:number; concurrency:number }> =[]
for (leti =0; i <segs; i++) {
constt =i/(segs-1|| 1)
const ¢ = Math.round(start + (end - start) * t)
stages.push({ durationMs: per, concurrency: Math.max(1, c) })

}

return stages
}
const base = Math.max(1, spec.baseConcurrency ?? spec.concurrency ?? 1)
const spike = Math.max(base, spec.spikeConcurrency ?? (base * 3))
const warm = Math.floor(total * 0.4)
const spikeDur = Math.floor(total * 0.2)
const cool = total - warm - spikeDur

return [

71

{ durationMs: warm, concurrency: base },
{ durationMs: spikeDur, concurrency: spike },
{ durationMs: cool, concurrency: base },
1
}

function pickMix(mix: Array<{ weight: number; request: { target: string; method?: string; headers?:
Record<string,string>; body?: string } }>) {
const total = mix.reduce((a, b) => a + Math.max(0, b.weight || 0), 0) || 1
let r = Math.random() * total
for (const item of mix) {
r -= Math.max(0, item.weight || 0)
if (r <= 0) return item.request

}

return mix[mix.length - 1].request

}

async function runMixForDuration(db: Database, runld: number, mix: Array<{ weight: number; request: {
target: string; method?: string; headers?: Record<string,string>; body?: string } }>, concurrency: number,
durationMs: number, thinkTimeMs?: number) {
const deadline = Date.now() + durationMs
async function worker() {
while (Date.now() < deadline) {
const req = pickMix(mix)
const m = (regq.method || 'GET").toUpperCase()
await singleRequest(db, runld, req.target, m, req.body, reg.headers)
if (thinkTimeMs && thinkTimeMs > 0) await new Promise(r => setTimeout(r, thinkTimeMs))
}
}

const workers = Array.from({ length: Math.max(1, concurrency) }, () => worker())

await Promise.all(workers)

}

const runEmitters = new Map<number, EventEmitter>()
function getRunEmitter(runld: number) {
let em = runEmitters.get(runid)
if ('fem) { em = new EventEmitter(); runEmitters.set(runld, em) }

return em

72

async function executeK6Run(db: Database, runld: number, spec: SimpleSpec, method: string) {
const tmp = fs.mkdtempSync(path.join(os.tmpdir(), 'perfbench-k6-'))
const scriptPath = path.join(tmp, “run-${runlid}.js")
const summaryPath = path.join(tmp, “summary-${runid}.json)

const options: any = {}
if (spec.stages && spec.stages.length) {
options.stages = spec.stages.map(s => ({ duration: “${Math.max(1, Math.round(s.durationMs/1000))}s",
target: Math.max(1, s.concurrency) }))

} else if (spec.durationMs && spec.durationMs > 0) {

options.vus = Math.max (1, spec.concurrency ?? 1)

options.duration = “${Math.max(1, Math.round(spec.durationMs/1000))}s
}else {

options.vus = Math.max(1, spec.concurrency ?? 1)

if (spec.requests && spec.requests > 0) options.iterations = spec.requests

}

const bodyArg = spec.body ? °, ${JSON.stringify(spec.body)}" : "

const script = “import http from 'k6/http';\nexport const options = ${ISON.stringify(options)};\nexport default
function () {\n const res = http.request('${method}', '${spec.target}'${bodyArg});\n}"

fs.writeFileSync(scriptPath, script)

await new Promise<void>((resolve, reject) => {
const proc = spawn('k6', ['run’, '--summary-export', summaryPath, scriptPath], { stdio: ‘inherit' })
proc.on(‘error’, reject)
proc.on(‘exit’, (code) => code === 0 ? resolve() : reject(new Error("k6 exit code ${code}")))
}).catch(err => {
const notes = JSON.stringify({ engine: 'k6', error: String(err) })
db.prepare('update runs set status = ?, finishedAt = datetime(\'now\'), notes = ? where id = ?").run('failed’,

notes, runld)

by,

try {
if (fs.existsSync(summaryPath)) {

const content = fs.readFileSync(summaryPath, 'utf-8")

73

db.prepare(‘'update runs set notes = ? where id = ?').run(JSON.stringify({ engine: 'k6', summary:
JSON.parse(content) }), runid)

}
} catch {}

}

