HIGHER EDUCATIONAL ESTABLISHMENT OF UKOOPSPILKA
«POLTAVA UNIVERSITY OF ECONOMICS AND TRADE»

EDUCATIONAL AND SCIENTIFIC INSTITUTE OF INTERNATIONAL
EDUCATION

FORM OF DAY EDUCATION
DEPARTMENT OF COMPUTER SCIENCES AND INFORMATION

TECHNOLOGY

Allowed for protection
Head of the department Olkhovska O.V.

(signature)

" " 2022

EXPLANATORY NOTE
FOR THE GRADUATE THESIS

ON THE TOPIC «<APPLICATION OF ARRAYS IN JAVA PROGRAMMING
LANGUAGE FOR DEVELOPMENT OF SOFTWARE»

from specialty 122 «Computer science»
educational program «Computer science»

master's degree

The executor of the work is Sufian Milad Ghrmida
"o 2022.

(signature)

Scientific supervisor, Ph.D. k.ped.s., Oksana Koshova

o 2022.

(signature)

POLTAVA - 2022



HIGHER EDUCATIONAL ESTABLISHMENT OF UKOOPSPILKA
"POLTAVA UNIVERSITY OF ECONOMICS AND TRADE"
| APPROVE

Head of the department Olkhovska O.V.
" » 2022

TASKS AND CALENDAR SCHEDULE
OF EXECUTION OF DIPLOMA THESIS

Graduate of higher education in specialty 122 ""Computer science"’

Educational program ""Computer Science"

Surname, first name, patronymic _ Sufian Milad Ghrmida

1. The topic «Application of Arrays in Java Programming Language for
Development of Software»

approved by the rector's order No. 139-H from 01. 09. 2022

The deadline for the student to submit a thesis « __ » 2022

2. Source data for the master's thesis: publications on the topic of educational
simulators in distance courses in computer science.

3. Content of the explanatory note (list of issues to be developed)

LIST OD SYMBOLS, UNITS, ABBREVIATIONS, RERMS
AN INTRODUCTION
CHAPTER 1. PROBLEM STATEMENT
1.1. Problem Statement
1.2. Information Review
CHAPTER2. THEORETICAL PART
2.1. Array statement
2.2. The purposes of an Array
2.3. Array Lists
CHAPTER 3. PRACTICAL PART
3.1. NetBeans in Java
3.2. Java Swing
3.3. Examples of Application of Array in Java
3.4. Design And Programming of The Scientific Calculator
CONCLUSIONS
REFERENCES
APPENDIX A. Algorithm translation
Descriptive Algorithm
APPENDIX B. program code



4. List of graphic material : 3-4 sheets of block diagrams, other necessary

illustrations.
5. Consultants of sections of the master's thesis

Section Surname, initials, Signature, date
position of consultant | issued the task accepted the
task

1. Statement of the | Oksana Koshova

problem

2. Information Oksana Koshova

review

3. Theoretical part | Oksana Koshova

4. Practical Oksana Koshova

implementation
6. Calendar schedule of master's work

The content of the work . Actual
Deadline
performance

1. Introduction

2. Study of methodological recommendations and
standards and report to the manager

Formulation of the problem

Information review of library and Internet sources
Theoretical part

The practical part

Completion of registration

Student report at the department

Editing (if necessary), reviewing

QPN |0~ w

Issue date of task " " 2022.
Sufian Milad Ghrmida, a higher education graduate
Scientific supervisor, Ph.D., k.ped.n., Oksana Koshova.

The results of the thesis defense
The thesis was evaluated at

(points, assessment according to the national scale, assessment according to ECTS)
Minutes of the meeting of the EC No. of " " 2022.
Secretary of the EC

(signature) (initials and surname)




| approve Agreed

Chief department Supervisor

Ph.D.. k.ph.-m.s. O. Olkhovska associate professor, Ph.D. O. Koshova

" " 2022 " " 2022
Plan

Thesis of a higher education graduate with a master's degree
majors 122 Computer science
educational program 122 Computer science
Surname, first name, patronymic Sufian Milad Ghrmida
On the topic “Application of Arrays In Java Programming Language For
Development Of Software”
CHAPTER 1. PROBLEM STATEMENT
1.1.  Problem Statement
1.2. Information Review
CHAPTER2. THEORETICAL PART
2.1. Array statement
2.2. The purposes of an Array
2.3. Array Lists
CHAPTER 3. PRACTICAL PART
3.1. NetBeans in Java
3.2. Java Swing
3.3. Examples of Application of Array in Java
3.4. Design And Programming of The Scientific Calculator
CONCLUSIONS
REFERENCES
APPENDIX A. Algorithm translation
Descriptive Algorithm
APPENDIX B. program code

Graduate of higher education Sufian Milad Ghrmida
" " 2022







ABSTRACT

Note: 87 pp., including the main part is 40 pages, 18 sources.

The purpose of the Grade work. The purpose of the grade work is
development of software with application of arrays in Java programming language.

The object of the Grade work is process of professional education of students
majoring in Computer Sciences.

The subject of the Grade work is software with application of arrays in java
programming language.

Keywords: Java, Java Swing Platform, “Array in Java”, NetBeans, Math

Class.



CONTENT
LIST OF SYMBOLS, UNITS, ABBREVIATIONS, TERMS.......cccoiiiiiiiie e 7
AN INTRODUCTION ..ottt ettt bbbttt ettt e bbb esbeebeeneenneneas 8
CHAPTER 1. PROBLEM STATEMENT ...t 12
1.1, Problem SAtemMENT ..o e 12
1.2, INTOrMAtION REVIBW ....o.viiiiiiiiiiiieie ettt bbbt 12
CHAPTER 2. THEORETICAL PART ...ttt 16
2.1. ARRAY STATEMENT ..ottt ettt 16
2.2. THE PURPOSES OF AN ARRALY ...ttt 16
2.3. ARRAY LIS T S e e et e et e et e e e ar e e anae e 22
CHAPTER 3. PRACTICAL PART ..ottt sttt 32
3.1 NEEBEANS IN JAVA ..ottt bbbttt e et bbbt ene e e 32
3L2. JAVA SWINQ ...ttt ettt bbbt b et b Rttt b e bbbttt 33
3.3. Examples of Application of Array iN JAVA .........cccccceieiiiiiie i 34
3.4. Design And Programming Of The Scientific Calculator ..............cccoovevviiiiiiiicic e, 43
CONCLUSIONS ... ettt e e et e et e e e bt e et e e st e e s ate e e anteeesnteeeanaeeeneeeanseeeanns 47
REFERENGCES ...ttt b bbbttt ettt et bbb bt n e ne e st e 48
APPENDIX A. Algorithm translation .............cccocoeiieiiic i 50
DeSCHIPLIVE AIGOTTENM. ..ottt 50

APPENDIX B. Program COUR..........couiiiiiiiieiteite sttt sttt 51



LIST OF SYMBOLS, UNITS, ABBREVIATIONS, TERMS

SYMBOLS, UNITS,
ABBREVIATIONS,
TERMS

Explanation of symbols, units, abbreviations, terms

Simulator

a program enabling a computer to execute program

class

A user-defined data type, which holds it’s own data members
and member functions, which can be accessed and used by

creating an instance of that class

Math class

Java Math class provides several methods to work on math
calculations like min(), max(), avg(), sin(), cos(), tan(),
round(), ceil(), floor(), abs() etc.

JDK

The Java Development Kit is a distribution of Java
Technology by Oracle Corporation. It implements the Java
Language Specification and the Java Virtual Machine
Specification and provides the Standard Edition of the Java

Application Programming

JFrame

JFrame class is a type of container which inherits the java.
awt. Frame class. JFrame works like the main window where
components like labels, buttons, textfields are added to create
a GUL.

Java

Java is a high-level, class-based, object-oriented
programming language that is designed to have as few

implementation dependencies as possible.




AN INTRODUCTION

Topicality. In our world today, computers are used in many fields such as
business, industry, administration, education, and in various aspects of our lives, and
this is only done by using one of the programming languages.

A programming language is a set of symbols, grammar, and rules with the help
of which one is able to translate algorithms to programs that will be executed by the
computer. The programmer communicates with a machine using programming
languages. Most of the programs have a highly structured set of rules. The primary
classifications of programming languages are Machine Languages. Assembly
Languages. High-level Languages.

In this work grade, | have implemented a simulator on the topic "Array" in the
Java programming language.

Arrays in java are used to store multiple values in a single variable, instead of
declaring separate variables for each value.

Java array is an object which contains elements of a similar data type.
Additionally, the elements of an array are stored in a contiguous memory location. It
IS a data structure where we store similar elements. We can store only a fixed set of
elements in a Java array.

Array in Java is index-based, the first element of the array is stored at the Oth
index, 2nd element is stored on the 1st index, and so on.

In Java, an array is an object of a dynamically generated class. Java array
inherits the Object class and implements the Serializable as well as Cloneable
interfaces. We can store primitive values or objects in an array in Java. Like C/C++,
we can also create single dimentional or multidimentional arrays in Java.

Moreover, Java provides the feature of anonymous arrays which is not
available in C/C++.



10

For the first task in this grade work, I will initially study arrays in Java, clarify
their types and methods of declaring them, and explain how to enter the values of
different types inside them, and I will explain their advantages and disadvantages.

For the second task in this grade work, I will design and write a program in the
Java language that implements a scientific calculator, and | will use the array to store
the values that the user will enter and also to store the values resulting from the
calculations executed through the scientific calculator.

In the era of globalization, we used Calculator so many times. We use it to do
the calculation in a short time. In this perspective, | have made a java Scientific
Calculator software. By using this software, we can easily calculate our mathematical
problem.

The purpose of the Grade work. The purpose of the grade work is
development of software with application of arrays in Java programming language.

The object of the Grade work is process of professional education of students
majoring in Computer Sciences.

The subject of the Grade work is software with application of arrays in java
programming language.

The aim of the simulator is for the simulator to be used as training aid to help
students understand the topic of Array in java language.

The following methods for the development have been used:

- NetBeans Platform including JDK.

JFrame container.

java language.

java Swing.

Java is a programming language created by James Gosling from Sun
Microsystems (Sun) in 1991. The target of Java is to write a program once and then

run this program on multiple operating systems.



11

The first publicly available version of Java (Java 1.0) was released in 1995 Sun
Microsystems was acquired by the Oracle Corporation in 2010. Oracle has now the
steermanship for Java In 2006 Sun started to make Java available under the GNU
General Public License (GPL). Oracle continues this project called Open JDK.
Over time new enhanced versions of Java have been released .The current version of
Java is Java 17; Java is defined by a specification and consists of a programming
language, a compiler, core libraries, and a runtime (Java virtual machine). The Java
runtime allows software developers to write program code in other languages than the
Java programming language which still runs on the Java virtual machine. The Java
platform is usually associated with the Java virtual machine and the Java core
libraries. The Java language was designed with the following properties:

Platform independent: Java programs use the Java virtual machine as an
abstraction and do not access the operating system directly. This makes Java
programs highly portable. A Java program (which is standard-compliant and follows
certain rules) can run unmodified on all supported platforms, e.g., Windows or Linux.
Object-orientated programming language: Except for the primitive data types, all
elements in Java are objects. Strongly-typed programming language: Java is strongly-
typed, e.g., the types of the used variables must be pre-defined and conversion to
other objects is relatively strict, e.g., must be done in most cases by the programmer.
Interpreted and compiled language: Java source code is transferred into the bytecode
format which does not depend on the target platform. These bytecode instructions
will be interpreted by the Java Virtual machine (JVM). The JVM contains a so-called
Hotspot-Compiler which translates performance-critical bytecode instructions into
native code instructions. Automatic memory management: Java manages the memory
allocation and de-allocation for creating new objects. The program does not have
direct access to the memory. The so-called garbage collector automatically deletes
objects to which no active pointer exists.

This Grade work will study one of the most important topics of the Java

language, which is: In Java, an Array is an object instantiated from a dynamically



12

generated class. Internally, an array in Java is a set of variables referenced by using a
single variable name combined with an index number. Each item of an array is an
element. All the elements in an array must be of the same type. An int array can
contain int values, for example, and a String array can contain strings, Java array
implements Serializable and Cloneable interfaces. Java array also has an object class
as its parent class. You can store built-in and derived type values in Java arrays. The
list of methods used is the use of Java software. The Grade work uses the NetBeans
IDE visual development environment and the object-oriented Java programming
language. The explanatory note to the Grade work consists of three sections, the
Array statement, the purpose of the Array, Array list. The structure is built so that it
allows a logical presentation of the material and the disclosure of the topic of work.
The volume of the explanatory note: 87 pages, incl. The main part is 40 pages,

18 sources.



13



14

CHAPTER 1. PROBLEM STATEMENT

1.1. Problem Statement

Create a desktop application written in Java using the NetBeans platform,
which is a scientific calculator that helps students to study and do arithmetic and
mathematical work. At the same time, this application is a practical example of
Where the problem-solving principle was applied and entering values by the user and
is stored These entries are in the Array, and the user interface has been designed
uncomplicatedly so that it is used effectively, and the ready-made functions of the
Math class, and JFrame were used, in the design of the user interface, and this

application may be developed in the future.

1.2. Information Review

Review of simulators with similar topics and tasks
From the electronic archive of the North East University Bangladesh, | select work
that has a similar subject, task, and programmatic implementation to the future
project.
According to the following parameters, one Project Report was found:
Course Title: Project Work I, Course Code: CSE-200, Project Report created by Md.
Abdul Mutalib .
The Project Feature: In his software, | have designed 5 five features.
Which are
» Standard Mode
» Scientific Mode
* Math Quiz
* Currency Converter
* Play Game
Tools/Software used: To build his software, he has used Apache NetBeans IDE 12.2

software. On the other hand, I have used Java language along with Java GUI.



15

Details of his work with the necessary screenshot:

As he mentioned before, he has designed five features for his project. Now he has
written the details of his project. This is the Standard Mode of his Scientific
Calculator. Wherein we can calculate normal mathematical equations. Like, addition,
subtraction, multiplication, division, and square root. On the run time of the
calculator, we can clear all the previous calculations by pressing the c¢ button.
Likewise, it also possible to delete a single digit from the calculator by pressing the
left arrow («—) sign button.

The following image is the first feature of his software

Figure 1.1. the Standard Mode of his Scientific Calculator.
The following image is the second feature of his software. By using Scientific Mode,
we can get the value of Sin, Cos, Tan, and others. This feature is basically for doing

Scientific mathematical operations.

Figure 1.2. The Standard Mode of his Scientific Calculator.

This is the 3rd feature of his software. Here a user can take a math quiz.



16

Math Quiz:
& ] - O x

1+1=?

Figure 1.3. The starting page of a math quiz
At the end of quiz, user will get the score of the quiz. User can restart the quiz.

£2) - a X

Math Quiz.

60

Restartthe Quiz

Figure 1.4. The score of the quiz

This is the 4 th feature of his project (Currency Converter). Here user can convert a
specific amount of money to one currency to another currency. In this screenshot he
has shown a demo. Like The amount is: 256 USD to BD Taka will be 21818.88.

Message X
Enter the Amount: 256
6 The Amount is: 21818.88
From usD |
To BD Taka >

Figure 1.5. The Currency Converter



17

At last, he has added a minor game feature to my project. A user can play the game
whenever he wants. There will be nine boxes to fill up. Here he has added a

screenshot of this game.

Figure 1.6. The play of game

Challenges that he faced to do this project:

Basically, in this project he has faced some issues with completing this project. Most
of the time, he faced implementing logic in coding. There are so many classes in the
Java language that he is not a well-known student to implement in the project. These
kinds of issues he has faced in this project.

Results:

In his project, all the feature works perfectly except Tik Tac Toe game. There are

some bugs that he couldn’t fix the last time.



18

CHAPTER 2. THEORETICAL PART

2.1. Array statement
For the distance course "Programming 11" you need to develop a simulator. The main
points of the work:
e describe the Java language;
e give the basic concepts of the topic Array;
e develop an array for the simulator and make a block diagram;
e describe the programming language and technologies used in developing the

program.

2.2. The purposes of an array
What are the Arrays

The Arrays hold sequences of values of the same type. the following sections
show how to work with arrays in Java.
Declaring Arrays

an array is a data structure that stores a collection of values of the same type.
We can access each individual value through an integer index. For example, if a is an
array of integers, then a[i] is the i*" integer in the array.

Declare an array variable by specifying the array type—which is the element
type followed by []—and the array variable name. For example, here is the
declaration of an array a of integers:

int[] a;

int[] a= new int[100];

However, this statement only declares the variable a. It does not yet initialize a
with an actual array. Use the new operator to create the array. This statement declares
and initializes an array of 100 integers. The array length need not be a constant: new
int[n] creates an array of length n. Once we create an array, we cannot change its

length (although we can, of course, change an individual array element). If we



19

frequently need to expand the length of arrays while your program is running, we

should use array lists . & Note

we can define an array variable either as
int[] a;

or as

int af];

Most Java programmers prefer the former style because it neatly separates the

type int[] (integer array) from the variable name.

Java has a shortcut for creating an array object and supplying initial values:

int[] smallPrimes = {2, 3,5,7,11, 13 };

Notice that we do not use new with this syntax, and we don’t specify the

length. A comma after the last value is allowed, which can be convenient for an array

to which we keep adding values over time:

// add more names here and put a comma after each name
String[] authors = { "James Gosling", "Bill Joy", "Guy Steele", };
we can declare an anonymous array:

new int[] { 17, 19, 23, 29, 31, 37 }

This expression allocates a new array and fills it with the values inside the

braces. It counts the number of initial values and sets the array size accordingly. we

can use this syntax to reinitialize an array without creating a new variable. For

example:

smallPrimes = new int[] { 17, 19, 23, 29, 31, 37 };
is shorthand for :
int[] anonymous = { 17, 19, 23, 29, 31, 37 };

smallPrimes = anonymous;

Note

It is legal to have arrays of length 0. Such an array can be useful if we write a

method that computes an array result and the result happens to be empty. Construct

an array of length O as



20

new elementType[0]

or new

elementType[] {}

Note that an array of length 0 is not the same as null.
Accessing Array Elements

When we create an array of numbers, all elements are initialized with zero.

Arrays of boolean are initialized with false. Arrays of objects are initialized
with the special value null, which indicates that they do not (yet) hold any objects.

This can be surprising for beginners. For example,

String[] names = new String[10];

creates an array of ten strings, all of which are null. If we want the array to
hold empty strings, we must supply them:

String[] names = new String[10];

for (int1=0; i <10; i++) names[i] ="";
é Caution

If we construct an array with 100 elements and then try to access the element
a[100] (or any other index outside the range from 0 to 99),

an “array index out of bounds” exception will occur.

To find the number of elements of an array, use array.length. For example:

for (inti=0; i <a.length; i++)

System.out.printin(a[i]);

The “for each” Loop

Java has a powerful looping construct that allows we to loop through each
element in an array (or any other collection of elements) without having to fuss with
index values. The enhanced for loop

for (variable : collection) statement

sets the given variable to each element of the collection and then executes the
statement (which, of course, may be a block).



21

Array Copying
we can copy one array variable into another, but then both variables refer to the same
array:

int[] luckyNumbers = smallPrimes;

luckyNumbers[5] = 12; // now smallPrimes[5] is also 12

Figure 1.1 shows the result. If we actually want to copy all values of one array

into a new array, use the copyOf method in the Arrays class:

smallPrimes = < 2
3
luckyNumbers = — 5
' ' 7
11
12
Figure 1.1. copying an array variable
int[] copiedLuckyNumbers = Arrays.copyOf(luckyNumbers,

luckyNumbers.length);

The second parameter is the length of the new array. A common use of this
method is to increase the size of an array:

luckyNumbers = Arrays.copyOf(luckyNumbers, 2 * luckyNumbers.length);

The additional elements are filled with O if the array contains numbers, false if
the array contains boolean values. Conversely, if the length is less than the length of
the original array, only the initial values are copied.

Command-Line Parameters



22

java.util.Arrays

o static String toString(xxx[] a) 5

o returns a string with the elements of a, enclosed in brackets and
delimited by commas. In this and the following methods, the component type xxx
of the array can be int, long, short, char, byte, boolean, float, or double.

o static xxx[] copyOf(xxx[] a, int end)

o static xxx[] copyOfRange(xxx[] a, int start, int end)

returns an array of the same type as a, of length either end or end — start,
filled with the values of a. If end is larger than a.length, the result is padded with 0
or false values.

static void sort(xxx[] a)

sorts the array, using a tuned QuickSort algorithm.

static int binarySearch(xxx[] a, Xxxx v)

static int binarySearch(xxx[] a, int start, int end, Xxx v)

uses the binary search algorithm to search for the value v in the sorted array
a. If v is found, its index is returned. Otherwise, a negative value r is returned; —r
— 1 is the spot at which v should be inserted to keep a sorted.

static void fill(xxx[] a, Xxx v)

sets all elements of the array to v.

static boolean equals(xxx[] a, xxx[] b)

returns true if the arrays have the same length and if the elements at

corresponding indexes match.

Multidimensional Arrays (matrix)

Multidimensional arrays use more than one index to access array elements.

They are used for tables and other more complex arrangements. Declaring a two-

dimensional array in Java is simple enough. For example:
double[][] balances;

we cannot use the array until you initialize it.



23

In this case, you can do the initialization as follows:

balances = new double[NYEARS][NRATES];

In other cases, if we know the array elements, we can use a shorthand notation
for initializing a multidimensional array without a call to new. For example:

int[][] magicSquare = { {16, 3, 2, 13}, {5, 10, 11, 8}, {9, 6, 7, 12}, {4, 15, 14,
1} X

Once the array is initialized, we can access individual elements by supplying
two pairs of brackets—for example, balances[i][j]. The example program stores a
one-dimensional array interest of interest rates and a two-dimensional array balances
of account balances, one for each year and interest rate. We initialize the first row of
the array with the initial balance:

for (int j = 0; j < balances[0].length; j++)

balances[0][j] = 10000;

Then we compute the other rows, as follows:

for (int1=1; i < balances.length; i++)

{ for (int j = 0; j < balances[i].length; j++)

{ double oldBalance = balances]i - 1][j]; double interest = . . .; balances][i][j] =
oldBalance + interest; } }

shows the full program.
Ragged Arrays

java has no multidimensional arrays at all, only one-dimensional arrays.
Multidimensional arrays are faked as “arrays of arrays.” For example, the balances
array in the preceding example is actually an array that contains ten elements, each of

which is an array of six floating-point numbers (Figure 2.2).



24

balances = > »  10000.0

T balances[1] = —_— 10000.0
10000.0
10000.0
10000.0
10000.0

11000.0
11100.0
11200.0
11300.0
11400.0
11500.0

|

balances[1][2] =

23579.48
25580.37
27730.79
30040.42
32519.49
35178.76

Figure 1.2 A two-dimensional array
The expression balances]i] refers to the ith subarray—that is, the ith row of the
table.
It is itself an array, and balances][i][j] refers to the jth element of that array.
Since rows of arrays are individually accessible, you can actually swap them!
double[] temp = balances[i];
balances[i] = balances][i + 1];

balances[i + 1] = temp;

2.3. Array lists
Review of Generic Array Lists
ArrayList class implements List interface and it is based on an Array data

structure. It is widely used because of the functionality and flexibility it offers. Most



25

of the developers choose ArrayList over Array as it’s a very good alternative of
traditional java arrays. ArrayList is a resizable-array implementation of the interface.
It implements all optional list operations, and permits all elements, including. The
List interface describes an ordered collection in which the position of elements
matters. There are two protocols for visiting the elements: through an iterator and by
random access with methods get and set. The latter is not appropriate for linked lists,
but of course get and set make a lot of sense for arrays. The collections library
supplies the familiar ArrayList class that also implements the List interface. An
ArrayL.ist encapsulates a dynamically reallocated array of objects.

Why Array List is better than Array?

The limitation with array is that it has a fixed length so if it is full, you cannot
add any more elements to it, likewise if there are number of elements gets removed
from it the memory consumption would be the same as it doesn’t shrink. On the other
ArrayList can dynamically grow and shrink after addition and removal of elements.
Apart from these benefits ArrayL.ist class enables us to use predefined methods of it
which makes our task easy. Let’s see the diagrams to understand the addition and
removal of elements from ArrayL.ist and then we will see the programs.

Note

If we are a veteran Java programmer, we may have used the Vector class
whenever you need a dynamic array.

Why use an ArrayL.ist instead of a VVector?

For one simple reason: All methods of the Vector class are synchronized. It is safe to
access a Vector object from two threads. But if we access a vector from only a single
thread - by far the more common case - our code wastes quite a bit of time with
synchronization. In contrast, the ArrayList methods are not synchronized. We
recommend that you use an ArrayL.ist instead of a Vector whenever you don’t need
synchronization.we can set the size of an array at runtime.

int actualSize =. . ;

var staff = new Employee[actualSize];



26

Of course, this code does not completely solve the problem of dynamically
modifying arrays at runtime. Once you set the array size, you cannot change it easily.
Instead, in Java you can deal with this common situation by using another Java class,
called ArrayList. The ArrayList class is similar to an array, but it automatically
adjusts its capacity as you add and remove elements, without any additional code.
ArrayList is a generic class with a type parameter. To specify the type of the element
objects that the array list holds, you append a class name enclosed in angle brackets,
such as ArrayList<Employee>.

The following sections show you how to work with array lists.

Declaring Array Lists:

Here is how to declare and construct an array list that holds Employee objects:

ArrayL.ist staff = new ArrayList();

As of Java 10, it is a good idea to use the var keyword to avoid duplicating the
class name:

var staff = new ArrayList();

it we don’t use the var keyword, you can omit the type parameter on the
righthand side:

ArrayL.ist staff = new ArrayList<>();

This is called the “diamond” syntax because the empty brackets <> resemble a
diamond.

Use the diamond syntax together with the new operator. The compiler checks
what happens to the new value. If it is assigned to a variable, passed into a method, or
returned from a method, then the compiler checks the generic type of the variable,
parameter, or method. It then places that type into the <>. In our example, the new
ArrayList<>() is assigned to a variable of type ArrayList. Therefore, the generic type
is Employee.
¢ Caution

If we declare an ArrayList with var, do not use the diamond syntax. The

declaration



27

var elements = new ArrayList<>();

yields an ArrayL.ist
Note

Before Java 5, there were no generic classes. Instead, there was a single
ArrayList class, a one-size-fits-all collection holding elements of type Object.we can
still use ArrayList without a suffix. It is considered a “raw” type, with the type
parameter erased.

In even older versions of Java, programmers used the Vector class for dynamic
arrays. However, the ArrayList class is more efficient, and there is no longer any
good reason to use the Vector class.

Use the add method to add new elements to an array list. For example, here is
how you populate an array list with Employee objects:

staff.add(new Employee(""Harry Hacker", . . .));

staff.add(new Employee("Tony Tester", . . .));

The array list manages an internal array of object references. Eventually, that
array will run out of space. This is where array lists work their magic: If you call add
and the internal array is full, the array list automatically creates a bigger array and
copies all the objects from the smaller to the bigger array.If we already know, or have
a good guess, how many elements you want to store, call the ensureCapacity method
before filling the array list:

staff.ensureCapacity(100);

That call allocates an internal array of 100 objects.

Then, the first 100 calls to add will not involve any costly reallocation.

You can also pass an initial capacity to the ArrayL.ist constructor:

ArrayL.ist staff = new ArrayList<>(100);

é Caution
Allocating an array list as
new ArrayList<>(100) // capacity is 100

Is not the same as allocating a new array as



28

new Employee[100] // size is 100

There is an important distinction between the capacity of an array list and the
size of an array. If you allocate an array with 100 entries, then the array has 100 slots,
ready for use.An array list with a capacity of 100 elements has the potential of
holding 100 elements (and, in fact, more than 100, at the cost of additional
reallocations)—but at the beginning, even after its initial construction, an array list
holds no elements at all. The size method returns the actual number of elements in the
array list. For example,

staff.size()

returns the current number of elements in the staff array list.

This is the equivalent of

a.length

for an array a.

Once you are reasonably sure that the array list is at its permanent size, you can
call the trimToSize method. This method adjusts the size of the memory block to use
exactly as much storage space as is required to hold the current number of elements.

The garbage collector will reclaim any excess memory. Once you trim the size
of an array list, adding new elements will move the block again, which takes time.
we should only use trimToSize when you are sure you won’t add any more elements

to the array list.

java.util. ArrayL.ist

e ArrayList()

constructs an empty array list.
o ArrayList(int initialCapacity)
constructs an empty array list with the specified capacity.
e boolean add(E obj)
appends obj at the end of the array list. Always returns true.

e intsize()

returns the number of elements currently stored in the array list. (Of course,




29

this is never larger than the array list’s capacity).

¢ void ensureCapacity(int capacity)
ensures that the array list has the capacity to store the given number of
elements without reallocating its internal storage array.

e void trimToSize()

reduces the storage capacity of the array list to its current size.

Accessing Array List Elements

Unfortunately, nothing comes for free. The automatic growth convenience of
array lists requires a more complicated syntax for accessing the elements. The reason
is that the ArrayL.ist class is not a part of the Java programming language; it is just a
utility class programmed by someone and supplied in the standard library. Instead of
the pleasant [] syntax to access or change the element of an array, you use the get and
set methods. For example, to set the ith element, use

staff.set(i, harry);

This is equivalent to

a[i] = harry;

for an array a.(As with arrays, the index values are zero-based.)
é Caution

Do not call list.set(i, x) until the size of the array list is larger than i. For
example, the following code is wrong:

var list = new ArrayL.ist(100);

/I capacity 100,

size 0 list.set(0, x);

/I no element 0 yet

Use the add method instead of set to fill up an array, and use set only to replace
a previously added element.
To get an array list element, use

Employee e = staff.get(i);

This is equivalent to



30

Employee e = a][i];
Note

When there were no generic classes, the get method of the raw ArrayL.ist class
had no choice but to return an Object. Consequently, callers of get had to cast the
returned value to the desired type:

Employee e = (Employee) staff.get(i);

The raw ArrayList is also a bit dangerous. Its add and set methods accept
objects of any type.

A call

staff.set(i, "Harry Hacker");

compiles without so much as a warning, and you run into grief only when you
retrieve the object and try to cast it.

If you use an ArrayL.ist instead, the compiler will detect this error.

we can sometimes get the best of both worlds—flexible growth and convenient
element access—with the following trick. First, make an array list and add all the
elements:

var list = new ArrayList();

while (.. .)

{x=... listadd(x); }

When we are done, use the toArray method to copy the elements into an array:

var a = new X[list.size()];

list.toArray(a);

Sometimes, you need to add elements in the middle of an array list. Use the
add method with an index parameter:

int n = staff.size() / 2; staff.add(n, e);

The elements at locations n and above are shifted up to make room for the new

entry.



31

If the new size of the array list after the insertion exceeds the capacity, the
array list reallocates its storage array. Similarly, you can remove an element from the
middle of an array list:

Employee e = staff.remove(n);

The elements located above it are copied down, and the size of the array is
reduced by one. Inserting and removing elements is not terribly efficient.

It is probably not worth worrying about for small array lists. But if you store
many elements and frequently insert and remove in the middle of a collection,
consider using a linked list instead.

for (Employee e : staff)

do something with e

This loop has the same effect as

for (int1 = 0; i < staff.size(); i++)

{ Employee e = staff.get(i);

do something with e }

Below is a code using ArrayL.ist :

ArrayList<String> list=new ArrayL.ist<String>(); //Creating arraylist

list.add("Mango");//Adding object in arraylist

list.add("Apple™);

list.add('Banana™);
list.add("Grapes");
/[Printing the arraylist object
System.out.printin(list);

java.util.ArrayL.ist

e E set(int index, E obj)
puts the value obj in the array list at the specified index, returning the
previous contents.

e E get(int index)

gets the value stored at a specified index.




32

e void add(int index, E obj)
shifts up elements to insert obj at the specified index.
e E remove(int index)
removes the element at the given index and shifts down all elements above

it. The removed element is returned.

Compatibility between Typed and Raw Array Lists

In this section, we will see how to interoperate with legacy code that does not
use type parameters.

public class EmployeeDB {

public void update(ArrayList list) { ... }

public ArrayList find(String query) { ...} }

we can pass a typed array list to the update method without any casts.

ArrayList staff=. . ;

employeeDB.update(staff);

The staff object is simply passed to the update method.
é Caution

Even though we get no error or warning from the compiler, this call is not
completely safe. The update method might add elements into the array list that are not
of type Employee. When these elements are retrieved, an exception occurs. This
sounds scary, but if you think about it, the behavior is simply as it was before
generics were added to Java. The integrity of the virtual machine is never
jeopardized. In this situation, you do not lose security, but you also do not benefit
from the compile-time checks.
Conversely, when we assign a raw ArrayL.ist to a typed one, we get a warning.

ArrayList result = employeeDB.find(query); // yields warning
Note

To see the text of the warning, compile with the option - Xlint:unchecked.

Using a cast does not make the warning go away. ArrayList result =

(ArrayList) employeeDB.find(query); // yields another warning



33

Instead, we get a different warning, telling we that the cast is misleading. This
Is the consequence of a somewhat unfortunate limitation of generic types in Java. For
compatibility, the compiler translates all typed array lists into raw ArrayList objects
after checking that the type rules were not violated. In a running program, all array
lists are the same—there are no type parameters in the virtual machine. Thus, the
casts (ArrayList) and (ArrayList) carry out identical runtime checks. There isn’t
much we can do about that situation. When we interact with legacy code, study the

compiler warnings and satisfy yourself that the warnings are not serious.



34

CHAPTER 3. PRACTICAL PART

3.1. NetBeans in Java

NetBeans allows applications to be developed from a set of modular software
components called modules. NetBeans runs on Windows, macOS, Linux and Solaris.
In addition to Java development, it has extensions for other languages
like PHP, C, C++, HTMLJ5,[3] and JavaScript. Applications based on NetBeans,
including the NetBeans IDE, can be extended by third party developers.

NetBeans IDEis anopen-source integrated development environment.
NetBeans IDE supports development of all Java application types (Java
SE (including JavaFX), Java ME, web, EJB and mobile applications) out of the box.
Among other features are an Ant-based project system, Maven support, refactoring,
version control (supporting CVS, Subversion, Git, Mercurial and Clearcase ).

Modularity: All the functions of the IDE are provided by modules. Each
module provides a well-defined function, such as support for the Java language,
editing, or support for the CVS versioning system, and SVN. NetBeans contains all
the modules needed for Java development in a single download, allowing the user to
start working immediately. Modules also allow NetBeans to be extended. New
features, such as support for other programming languages, can be added by
installing additional modules.

NetBeans Profiler

The NetBeans Profiler is a tool for the monitoring of Java applications: It helps
developers find memory leaks and optimize speed. Formerly downloaded separately,
it is integrated into the core IDE since version 6.0. The Profiler is based on a Sun
Laboratories research project that was named JFluid. That research uncovered
specific techniques that can be used to lower the overhead of profiling a Java
application. One of those techniques is dynamic bytecode instrumentation, which is
particularly useful for profiling large Java applications. Using dynamic bytecode

instrumentation and additional algorithms, the NetBeans Profiler is able to obtain


https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Software_component
https://en.wikipedia.org/wiki/Software_component
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Solaris_(operating_system)
https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/HTML5
https://en.wikipedia.org/wiki/NetBeans#cite_note-3
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Third_party_developer
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Java_Platform,_Standard_Edition
https://en.wikipedia.org/wiki/Java_Platform,_Standard_Edition
https://en.wikipedia.org/wiki/JavaFX
https://en.wikipedia.org/wiki/Java_Platform,_Micro_Edition
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/EJB
https://en.wikipedia.org/wiki/MIDlet
https://en.wikipedia.org/wiki/Apache_Ant
https://en.wikipedia.org/wiki/Apache_Maven
https://en.wikipedia.org/wiki/Concurrent_Versions_System
https://en.wikipedia.org/wiki/Subversion_(software)
https://en.wikipedia.org/wiki/Git_(software)
https://en.wikipedia.org/wiki/Mercurial_(software)
https://en.wikipedia.org/wiki/Clearcase
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Concurrent_Versions_System
https://en.wikipedia.org/wiki/Memory_leak
https://en.wikipedia.org/wiki/Profiler_(computer_science)

35

runtime information on applications that are too large or complex for other profilers.
NetBeans also support Profiling Points that let you profile precise points of execution
and measure execution time.
GUI design tool
NetBeans GUI Builder

Formerly known as project Matisse, the GUI design-tool enables developers to

prototype and design Swing GUIs by dragging and positioning GUI components.

| &) Firstinterface - Apache NetBeans IDE 12.4 - o lES
File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help
¥ W2 3 J i * confia> Tl T, v Bt - (R - N .
| B - defaut config v il PO e (e
Proj... X Files Services | — | [ ManClass.java X | [} ManFrame.java X ¥ O | patette X -
& Frstinterface Source | Design = History L = | + Swing Containers A
@ Source Packages || Panel __| Tabbed Pane
2 E ack b ¢ + 10 BCORLE BV o # selacted
{ <default package> ¥ Use the context menu to access avalable useful actions for the selected components, Spiit Pane _J Scroll Pane
& ManClass. java Yool Bar Desl >
LD ManFrame.java D e
& 0@ TestPadages || ] Internal Frame ™ Layered Pane
+-[§ Ubraries Swing Controls
# [ TestUbraries el Label
ok Button
2 Toggle Button [
&~ Check Aox 4
[JFrame] - Navigator X — [JFrame] - Properties X —
B Form ManFrame Propertes  Events Code
3 Q Other Components Properties 2
# | [Frame]

defaultCloseOpe EXIT ON... w
| ttle

| = Other Properties
slwaysOnTop
alwaysOnTopSupp ¢

w#aDanasiEnmie (o

<

1 r | Frame) o

Figure 2.1. NetBeans GUI Builder

3.2. Java Swing

Java Swing is a software platform

Swing is a GUI widget toolkit for Java. It is part of Oracle's Java Foundation
Classes (JFC) —an API for providing a graphical user interface (GUI) for Java
programs.

Swing was developed to provide a more sophisticated set of GUI components
than the earlier Abstract Window Toolkit (AWT). Swing provides a look and feel that
emulates the look and feel of several platforms, and also supports a pluggable look

and feel that allows applications to have a look and feel unrelated to the underlying



36

platform. It has more powerful and flexible components than AWT. In addition to
familiar components such as buttons, check boxes and labels, Swing provides several
advanced components such as tabbed panel, scroll panes, trees, tables, and lists.
Unlike AWT components, Swing components are not implemented by
platform-specific code. Instead, they are written entirely in Java and therefore are

platform-independent.

Object

Component
T —  JProgressBar
Container
//,,/" T \ — JList
Window Panel JComponent
1 T T
I T |

Frame Applet AbstractButton JLabel JCcmboBox
JFrame JApplet JButton JToggleButton ¢———— JCheckBox

Figure 2.2. Swing Classes Hierarchy

3.3. Examples of Application of Array in Java

The array elements are numbered from 0 to 99 (and not 1 to 100). Once the
array is created, you can fill the elements in an array, for example, by using a loop:
Example 1.

package JavaProgrammingExample;

public class MainClass {

public static void main(String[] args) {

int[] a = new int[100];

for (inti=0;i<100; i++)

{ a[i]=1; /Ifills the array with numbers 0 to 99

System.out.printin(a[i]);



37

}} // end of main()
}/ end of MainClass

The collection expression must be an array or an object of a class that
implements the Iterable interface, such as ArrayL.ist. For example,
Example 2.

package JavaProgrammingExample;

public class MainClass {

public static void main(String[] args) {

int[la={17, 19, 23,29, 31, 37 };

for (int element : a)

System.out.printin(element);

} // end of main()

}/ end of MainClass

prints each element of the array a on a separate line. we should read this loop
as “for each element in a”. The designers of the Java language considered using
keywords, such as foreach and in. But this loop was a late addition to the Java
language, and in the end nobody wanted to break the old code that already contained
methods or variables with these names (such as System.in). Of course, we could
achieve the same effect with a traditional for loop:
Example 3.

package JavaProgrammingExample;

public class MainClass {

public static void main(String[] args) {

intfla={1,2,3,4,56}

for (inti=0; i <a.length; i++)

System.out.printIn(a[i]);

} // end of main()

}/ end of MainClass



38

However, the “for each” loop is more concise and less error-prone, as we don’t
have to worry about those pesky start and end index values.
Note

The loop variable of the “for each” loop traverses the elements of the array, not
the index values.

The “for each” loop is a pleasant improvement over the traditional loop if you
need to process all elements in a collection. However, there are still plenty of
opportunities to use the traditional for loop. For example, you might not want to
traverse the entire collection, or you may need the index value inside the loop.

v Tip

There is an even easier way to print all values of an array, using the toString
method of the Arrays class. The call Arrays.toString(a) returns a string containing the
array elements, enclosed in brackets and separated by commas, such as "[2, 3, 5, 7,
11, 13]". To print the array, simply call import java.util. Arrays;

Example 4.

package JavaProgrammingExample;

import java.util. Arrays;

public class MainClass {

public static void main(String[] args) {

intfla={1,2,3,4,5,6};

System.out.printin(Arrays.toString(a));

} // end of main()

}/ end of MainClass

we have already seen one example of a Java array repeated quite a few times.
Every Java program has a main method with a String[] args parameter. This
parameter indicates that the main method receives an array of strings— namely, the
arguments specified on the command line.

For example, consider this program:

Example 5.



39

package JavaProgrammingExample;
public class MainClass {
public static void main(String[] args) {
If (args.length == 0 || args[0].equals(*'-h"))
System.out.print("Hello,");
else if (args[0].equals(*-g™))
System.out.print("Goodbye,"); // print the other command-line arguments
for (int1=1; i <args.length; i++)
System.out.print(" ** + args[i]); System.out.printin(!");
} // end of main()
}/ end of MainClass
If the program is called as java Message -g cruel world
then the args array has the following contents:
args[0]: "-g"
args[1]: "cruel”
args[2]: "world"
The program prints the message
Goodbye, cruel world!
Array Sorting
To sort an array of numbers, you can use one of the sort methods in the Arrays
class:
Example 6.
package JavaProgrammingExample;
import java.util. Arrays;
public class MainClass {
public static void main(String[] args) {
intffla={6, 2,1, 4, 3,0};
Arrays.sort(a);
} // end of main()



40

}/ end of MainClass

This method uses a tuned version of the QuickSort algorithm that is claimed to
be very efficient on most data sets. The Arrays class provides several other
convenience methods for arrays that are included in the API notes at the end of this
section.
Example 7.

package JavaProgrammingExample;

import java.util. Arrays;

public class MainClass {

public static void main(String[] args) {

intfla={6, 2,1,4,3,0};

System.out.printin(Arrays.toString(a));

} // end of main()

}/ end of MainClass
Example 8.

package JavaProgrammingExample;

public class MainClass {

public static void main(String[] args) {

[* This program shows how to store tabular data in a 2D array.

@version 1.40 2004-02-10

@author Cay Horstmann */

final double STARTRATE = 10;

final int NRATES = 6;

final int NYEARS = 10;

/lset interest rates to 10 . . . 15%

double[] interestRate = new double[NRATES];

for (int j = 0; j < interestRate.length; j++)

interestRate[j] = (STARTRATE +j) / 100.0;

double[][] balances = new double[NYEARS][NRATES];



41

// set initial balances to 10000
for (int ] = 0; j < balances[0].length; j++)
balances[0][j] = 10000;
/I compute interest for future years
for (int1 = 1; i < balances.length; i++)
{ for (int j = 0; j < balances[i].length; j++)
{ // get last year's balances from previous row
double oldBalance = balances]i - 1][j];
I/l compute interest
double interest = oldBalance * interestRate[j];
/I compute this year's balances
balances[i][j] = oldBalance + interest;
3}
I print one row of interest rates
for (int j = 0; j < interestRate.length; j++)
System.out.printf(%9.0f%%", 100 * interestRate[j]);
System.out.printin();
/ print balance table
for (double[] row : balances)
{ // print table row
for (double b : row)
System.out.printf(*%210.2f", b);
System.out.printin();}
} // end of main()
}/ end of MainClass
Note
A “for each” loop does not automatically loop through all elements in a two-

dimensional array.



42

Instead, it loops through the rows, which are themselves one-dimensional
arrays.

To visit all elements of a two dimensional array a, nest two loops, like this:

for (double[] row : a)

for (double value : row)

{do something with value .....};

v Tip
To print out a quick-and-dirty list of the elements of a two-dimensional array, call
int[][] a={ {16, 3, 2, 13}, {5, 10, 11, 8}, {9, 6, 7, 12}, {4, 15, 14, 1} };

System.out.printin(Arrays.deepToString(a));

The output is formatted like this:

[[16, 3, 2, 13], [5, 10, 11, 8], [9, 6, 7, 12], [4, 15, 14, 1]]

It is also easy to make “ragged” arrays—that is, arrays in which different rows
have different lengths. Here is the standard example.

Let us make an array in which the element at row i and column j equals the
number of possible outcomes of a “choose j numbers from 1 numbers” lottery.
Example 9.

package JavaProgrammingExample;

public class MainClass {

public static void main(String[] args) {

int twoD[][] = new int[4][];

twoD[0] = new int[1];

twoD[1] = new int[2];

twoD[2] = new int[3];

twoD[3] = new int[4];

inti, j, k=0;

for(i=0; i<4; i++){

for(j=0; j<i+1; j++) {

twoD[i][j] = k;



43

k++; } }

for(i=0; i<4; i++) {

for(j=0; j<i+1; j++)1{

System.out.print(twoD[i][j] + " ");}
System.out.printin();}

} // end of main()

}/ end of MainClass

When we run this code, we will get the following result:
0

12

345

6789

As j can never be larger than i, the matrix is triangular.

The ith row has i + 1 elements. (We allow choosing 0 elements; there is one

way to make such a choice). To build this ragged array, first allocate the array

holding the rows:

int[][] odds = new intfNMAX + 1][];
Next, allocate the rows:

for (int n = 0; n <= NMAX; n++)
odds[n] = new int[n + 1];

Now that the array is allocated, we can access the elements in the normal way,

provided we do not overstep the bounds:

for (int n = 0; n < odds.length; n++)
for (int k = 0; k < odds[n].length; k++)
{ // compute lotteryOdds . . . odds[n][k] = lotteryOdds; }

Below is the code written in full:

Example 10.

package JavaProgrammingExample;

public class MainClass {



public static void main(String[] args) {
[* This program demonstrates a triangular array.
@version 1.20 2004-02-10
@author Cay Horstmann */
final int NMAX = 10;
/[ allocate triangular array
int[][] odds = new intfNMAX + 1][];
for (int n = 0; n <= NMAX; n++)
odds[n] = new int[n + 1];
/I fill triangular array
for (int n = 0; n < odds.length; n++)
for (int k = 0; k < odds[n].length; k++)
{ /*compute binomial coefficient n*(n-1)*(n-2)*...*(n k+1)/(1*2*3*...*k)*/
int lotteryOdds = 1;
for (inti=1;i<=k; i++)
lotteryOdds = lotteryOdds * (n-i+ 1) /i;
odds[n][k] = lotteryOdds;}
/[ print triangular array
for (int[] row : odds){
for (int odd : row)
System.out.printf("%4d", odd);
System.out.printin();}
} // end of main()
}/ end of MainClass
When we run this code, we will get the following result:
1
11
1 21
1331

44



45

46 41

51010 5 1

61520 15 6 1

721353521 7 1

8 28 56 70 56 28 8 1

9 36 84126126 84 36 9 1

1 10 45120210 252 210 120 45 10 1

N

3.4. Design And Programming of The Scientific Calculator

Details of my work with the necessary screenshot.

As | mentioned before, | have designed two features for my project.

Project Feature: In my software, | have designed 2 two features. Which are

* Standard Mode

* Scientific Mode

Now | have written the details of my project.

the first feature Standard Mode of my Scientific Calculator. Wherein we can
calculate normal mathematical equations. Like, addition, subtraction, multiplication,
division, and square root.

On the run time of calculator, we can clear all the previous calculations by
pressing CLEAR button.

the second feature of my Scientific Calculator. By using Scientific Mode, we
can get the value of Sin, Cos, Tan, and others. This feature is basically for doing

Scientific mathematical operations.



46

|£/ Scientific calculator - m} X
POLTAVA UNIVERSITY OF ECONOMICS AND TRADE
PROGRAM DEVELOPMENT FOR SCIENTIFIC CALCULATEOR BY USIG ARRAY ON JAVA
Scientific supervisor: Ph.D., Assoc. Oksana Koshova
Student who prepared the thesis : S.M.GRIMIDA
Please Enter the first number | Please Enter the fourth number
Please enter the second number Please enter the fifth number
Please Enter the third number Please enter the sixth number
L« JL - J L_* Jl_+r J | Avemce | [ cos J [ sin J{ ta J [ = |
to Radians
L g J(as J [ > J( < J( v J( asin J [ aos J[ atan leM“JI
result

Figure 3.1. The graphical interface of the scientific calculator application



47

CONCLUSIONS

In that Grade work project, there was an independent consideration of different
sources of information and mastering the project. Consolidation of theoretical
knowledge that was provided in the lecture material | have studied at university.

For the solving of our first task in my grade work (with using of different
sources of information):

- | have studied arrays in Java;

- I have clarified their types and methods of them declaring;

- | have explained how to enter the values of different types inside them

- | have explained their advantages and disadvantages.

For the solving of our second task in my grade work, | have designed and
written a program that implements a scientific calculator using the Java language and
has an array to store the values entered by the user and store the values resulting from
the mathematical operations executed through the scientific calculator.

| have completed all the tasks that | set at the beginning of Grade work. And
this is an excellent experience for me to do this project as one. This project can be
expanded with more advanced features. If some automatic equation-solving function

is added to the scientific calculator design, it will be more suitable for this project.



48

REFERENCES

1. CAY S. HORSTMANN, Core java volume | - fundamentals
ELEVENTH EDITION, Copyright © 2019 Pearson Education Inc. ISBN-13: 978-0-
13-516630-7.

2. A Brain-Friendly Guide to OOA&D, Head First Object-Oriented
Analysis and Design, Copyright © 2007, Published by O’Reilly Media, Inc., Printing
History: November 2006: First Edition. ISBN-978-0-596-00867-3.

3. A Wiley Brand, Java ALL-IN-ONE, 4th Edition, Published by: John
Wiley & Sons, Inc., Copyright © 2014 by John Wiley & Sons, Inc., Hoboken, New
Jersey ISBN 978-1-118-40803-2 (pbk); ISBN 978-1-118-41765-2 (ebk); ISBN 978-
1-118-46206-5 (ebk); ISBN 978-1-118-61288-0 (ebk).

4, luliana Cosmina, Java for Absolute Beginners, Learn to Program the
Fundamentals the Java 9+ Way, Copyright © 2018 by Iuliana Cosmina, ISBN-13
(pbk): 978-1-4842-3777-9, ISBN-13 (electronic): 978-1-4842-3778-6.

5. Maurice Naftalin and Philip Wadler, Java Generics and Collections,
Copyright © 2007 O’Reilly Media . All rights reserved., Published by O’Reilly
Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472, Printing
History: October 2006: First Edition, ISBN: 978-0-596-52775-4.

6. EARLY OBJECTS, JAVA HOW TO PROGRAM, Copyright © 2015,
2012 and 2009 Pearson Education, Inc., ISBN-13: 978-0-13-380780-6.

1. Charlie Hunt, Binu John., Java Performance, Copyright © 2012 Oracle
America, Inc., U.S. Corporate and Government Sales, first printing, September 2011,
Includes bibliographical references and index, ISBN-13: 978-0-13-714252-1.

8. Scott Sanderson, Java For Beginners, (Written By A Software Engineer).

9. Cay S. Horstmann, Java SE 8 for the Really Impatient, Copyright ©
2014 Pearson Education, Inc., ISBN-13: 978-0-321-92776-7, Text printed in the
United States on recycled paper at RR Donnelley in Crawfordsville, Indiana, First
printing, January 2014.



49

10. Herbert Schildt, Java the Complete Reference Eleventh Edition,
Comprehensive coverage of the Java Language, Copyright © 2019 by McGraw-Hill
Education (Publisher), ISBN: 978-1-26-044024-9.

11. Bruce Eckel, Thinking in Java, President, MindView, Inc., Fourth
Edition, ISBN 0-13-187248-6 (pbk. : alk. paper), Copyright © 2006, First printing,
January 2006.

12. Robert C. Martin Series, Clean Code A Handbook of Agile Software
Craftsmanship, ISBN-13: 978-0-13-235088-4, Copyright © 2009 Pearson Education,
Inc. First printing July, 2008.

13.  Brian Goetz with Tim Peierls, Joshua Bloch, Joseph Bowbeer ,David
Holmes and Doug Lea, Java Concurrency in Practice, Copyright © 2006 Pearson
Education, Inc. , ISBN 0-321-34960-1, 9th Printing March 2010 , Copyright © 2006
Pearson Education, Inc.

14.  Joshua Bloch, Effective Java, Third Edition, Copyright © 2018 Pearson
Education Inc., Portions copyright © 2001-2008 Oracle and/or its affiliates, ISBN-13:
978-0-13-468599-1.

15. Herbert Schildt, Java A Beginner’s Guide Eighth Edition, Copyright ©
2019 by McGrawHill Education (Publisher), ISBN: 978—1-26—044022-5.

16.  Scott Oaks, Java Performance: The Definitive Guide, Copyright © 2014
Scott Oaks. All rights reserved., Published by O’Reilly Media, Inc., 1005 Gravenstein
Highway North, Sebastopol, CA 95472., Editor: Meghan Blanchette, April 2014:
First Edition, 2014-04-09: First release, ISBN: 978-1-449-35845-7.

17.  CRAIG WALLS, Spring in Action, Fifth Edition, COVERS SPRING
5.0, ©2019 by Manning Publications Co. All rights reserved., ISBN:
9781617294945.

18. LASSE KOSKELA, Test Driven, PRACTICAL TDD AND
ACCEPTANCE TDD FOR JAVA DEVELOPERS, ©2008 by Manning Publications
Co., ISBN 1-932394-85-0.



50

APPENDIX A. Algorithm translation

Descriptive Algorithm.
Step 1. Start the Desktop application by launching a program NetBeans.
Step 2. The user will enter the numbers that he wants to apply the arithmetic
operations to, in text filed.
Step 3. The user chooses the calculation he wants.
Step 4. The result will be displayed in text field titled result.
Step 5. The user can clear the entries he entered in the text field by pressing the clear
button.

Step 6. End program.



51

APPENDIX B. Program code

public class NewJFramel extends javax.swing.JFrame {

public NewJFramel() {

initComponents();

/**

* This method is called from within the constructor to initialize the form.

* WARNING: Do NOT modify this code. The content of this method is
always

* regenerated by the Form Editor.

*/

@SuppressWarnings("unchecked")

I/l <editor-fold defaultstate="collapsed" desc="Generated Code">//GEN-
BEGIN:initComponents

private void initComponents() {

jLabell = new javax.swing.JLabel();

jLabel2 = new javax.swing.JLabel();
numberl = new javax.swing.JTextField();
number2 = new javax.swing.JTextField();
sumButton = new javax.swing.JButton();
subtractButton = new javax.swing.JButton();
multiplyButton = new javax.swing.JButton();
dividingButton = new javax.swing.JButton();
averageButton = new javax.swing.JButton();

resultButton = new javax.swing.JLabel();



number3 = new javax.swing.JTextField();
claerButton = new javax.swing.JButton();
jLabel3 = new javax.swing.JLabel();
jLabel4 = new javax.swing.JLabel();
jLabel5 = new javax.swing.JLabel();
jLabel7 = new javax.swing.JLabel();
number4 = new javax.swing.JTextField();
jLabel8 = new javax.swing.JLabel();
number5 = new javax.swing.JTextField();
jLabel9 = new javax.swing.JLabel();
number6 = new javax.swing.JTextField();
jLabel10 = new javax.swing.JLabel();
number7 = new javax.swing.JTextField();
C0S = new javax.swing.JButton();

sin = new javax.swing.JButton();

tan = new javax.swing.JButton();

log = new javax.swing.JButton();

abs = new javax.swing.JButton();
greater_than = new javax.swing.JButton();
less_than = new javax.swing.JButton();
sgrt = new javax.swing.JButton();

asin = new javax.swing.JButton();

acos = new javax.swing.JButton();

atan = new javax.swing.JButton();
to_Degrees = new javax.swing.JButton();
to_Radians = new javax.swing.JButton();
jLabel6 = new javax.swing.JLabel();

Pl = new javax.swing.JButton();

52



53

setDefaultCloseOperation(javax.swing.WindowConstants.EXIT _ON_CLOSE);

setTitle("Scientific calculator");

jLabell.setFont(new java.awt.Font("Times New Roman", 1, 14)); //

NOI18N
jLabell.setText("Please Enter the first number");
jLabell.setPreferredSize(new java.awt.Dimension(185, 25));
jLabel2.setFont(new java.awt.Font("Times New Roman", 1, 14)); //
NOI18N
jLabel2.setText("Please enter the second number");
jLabel2.setPreferredSize(new java.awt.Dimension(185, 25));
numberl.setFont(new java.awt.Font("Times New Roman", 1, 14)); //
NOI18N
numberl.setPreferredSize(new java.awt.Dimension(80, 25));
numberl.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {
numberlActionPerformed(evt);
¥
hk
number2.setFont(new java.awt.Font("Times New Roman", 1, 14)); //
NOI18N

number2.setPreferredSize(new java.awt.Dimension(80, 25));
number2.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

number2ActionPerformed(evt);



54

}
bk

sumButton.setText("+");

sumButton.setMaximumSize(new java.awt.Dimension(40, 25));

sumButton.setPreferredSize(new java.awt.Dimension(80, 25));

sumButton.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

sumButtonActionPerformed(evt);

}
bk

subtractButton.setText(*'-");

subtractButton.setMaximumSize(new java.awt.Dimension(40, 25));

subtractButton.setPreferredSize(new java.awt.Dimension(80, 25));

subtractButton.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

subtractButtonActionPerformed(evt);

}
H;

multiplyButton.setText("*");

multiplyButton.setMaximumSize(new java.awt.Dimension(40, 25));

multiplyButton.setPreferredSize(new java.awt.Dimension(80, 25));

multiplyButton.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

multiplyButtonActionPerformed(evt);

bok



NOI18N

55

dividingButton.setText(*"/");

dividingButton.setMaximumSize(new java.awt.Dimension(40, 25));

dividingButton.setPreferredSize(new java.awt.Dimension(80, 25));

dividingButton.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

dividingButtonActionPerformed(evt);

}
bk

averageButton.setFont(new java.awt.Font("*Tahoma™, 0, 10)); // NOI18N

averageButton.setText("AVERAGE");

averageButton.setMaximumSize(new java.awt.Dimension(40, 25));

averageButton.setPreferredSize(new java.awt.Dimension(80, 25));

averageButton.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

averageButtonActionPerformed(evt);

}
bk

resultButton.setFont(new java.awt.Font("Times New Roman", 1, 14)); //

resultButton.setHorizontal Alignment(javax.swing.SwingConstants. CENTER);

resultButton.setText("result");

number3.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

number3ActionPerformed(evt);



56

}
bk

claerButton.setText("Clear");

claerButton.setEnabled(false);

claerButton.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

claerButtonActionPerformed(evt);

}
bk

jLabel3.setFont(new java.awt.Font("Times New Roman", 1, 18)); //
NOI18N

jLabel3.setText("POLTAVA UNIVERSITY OF ECONOMICS AND
TRADE");

jLabel4.setFont(new java.awt.Font("Times New Roman", 1, 14)); //
NOI18N

jLabel4.setText("PROGRAM DEVELOPMENT FOR SCIENTIFIC
CALCULATEOR BY USIG ARRAY ON JAVA");

jLabel5.setFont(new java.awt.Font("Times New Roman", 1, 14)); //
NOI18N

jLabel5.setText("Student who prepared the thesis : S.M.GRIMIDA");

jLabel7.setFont(new java.awt.Font("Times New Roman", 1, 14)); //
NOI18N

jLabel7.setText("Please Enter the third number");

jLabel7.setPreferredSize(new java.awt.Dimension(185, 25));



NOI18N

NOI18N

NOI18N

NOI18N

NOI18N

57

number4.setFont(new java.awt.Font("Times New Roman", 1, 14)); //
number4.setPreferredSize(new java.awt.Dimension(80, 25));
number4.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {

number4ActionPerformed(evt);

}
bk

jLabel8.setFont(new java.awt.Font("Times New Roman", 1, 14)); //

jLabel8.setText("Please Enter the fourth number");
jLabel8.setPreferredSize(new java.awt.Dimension(185, 25));

numberb.setFont(new java.awt.Font("Times New Roman", 1, 14)); //

number5.setPreferredSize(new java.awt.Dimension(80, 25));

jLabel9.setFont(new java.awt.Font("Times New Roman", 1, 14)); //

jLabel9.setText("Please enter the fifth number"),
jLabel9.setPreferredSize(new java.awt.Dimension(185, 25));

number6.setFont(new java.awt.Font("Times New Roman", 1, 14)); //

number6.setPreferredSize(new java.awt.Dimension(80, 25));



58

jLabell10.setFont(new java.awt.Font("Times New Roman", 1, 14)); //
NOI18N
jLabel10.setText("'Please enter the sixth number");

jLabel10.setPreferredSize(new java.awt.Dimension(185, 25));

number7.setFont(new java.awt.Font("Times New Roman", 1, 14)); //
NOI18N

number7.setPreferredSize(new java.awt.Dimension(80, 25));

cos.setText("'cos");

cos.setPreferredSize(new java.awt.Dimension(80, 25));

cos.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

cosActionPerformed(evt);

}
bk

sin.setText("sin");

sin.setPreferredSize(new java.awt.Dimension(80, 25));

sin.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

sinActionPerformed(evt);

}
bk

tan.setText("tan");
tan.setPreferredSize(new java.awt.Dimension(80, 25));
tan.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {



59

tanActionPerformed(evt);

}
bk

log.setText("log");

log.setPreferredSize(new java.awt.Dimension(80, 25));

log.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

logActionPerformed(evt);

}
bk

abs.setText("abs");

abs.setPreferredSize(new java.awt.Dimension(80, 25));

abs.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

absActionPerformed(evt);

}
bk

greater_than.setText(">");

greater_than.setPreferredSize(new java.awt.Dimension(80, 25));

greater_than.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

greater_thanActionPerformed(evt);

}
H;

less_than.setText("<");



less_than.setPreferredSize(new java.awt.Dimension(80, 25));
less_than.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

less_thanActionPerformed(evt);

}
bk

AAWV

sqrt.setText("a"s");

sgrt.setPreferredSize(new java.awt.Dimension(80, 25));

sqrt.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

sqrtActionPerformed(evt);

}
H;

asin.setText("asin");

asin.setPreferredSize(new java.awt.Dimension(80, 25));

asin.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

asinActionPerformed(evt);

}
H;

acos.setText(""acos");
acos.setPreferredSize(new java.awt.Dimension(80, 25));
acos.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {
acosActionPerformed(evt);



61

bk

atan.setText("atan");

atan.setPreferredSize(new java.awt.Dimension(80, 25));

atan.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

atanActionPerformed(evt);

}
bk

to_Degrees.setFont(new java.awt.Font("Tahoma", 0, 10)); // NOI18N

to_Degrees.setText("to Degrees™);

to_Degrees.setPreferredSize(new java.awt.Dimension(85, 25));

to_Degrees.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

to_DegreesActionPerformed(evt);

}
bk

to_Radians.setFont(new java.awt.Font("Tahoma", 0, 10)); // NOI18N

to_Radians.setText("to Radians™);

to_Radians.setPreferredSize(new java.awt.Dimension(83, 25));

to_Radians.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

to_RadiansActionPerformed(evt);

H;



62

jLabel6.setFont(new java.awt.Font("Times New Roman", 1, 14)); //
NOI18N

jLabel6.setText("Scientific supervisor: Ph.D., Assoc. Oksana Koshova ");

Pl.setFont(new java.awt.Font(*Times New Roman", 1, 14)); // NOI18N
PLsetText("I€");
Pl.setPreferredSize(new java.awt.Dimension(80, 25));
Pl.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {

PlActionPerformed(evt);

by

b

javax.swing.GroupLayout layout = new
javax.swing.GroupLayout(getContentPane());
getContentPane().setLayout(layout);

layout.setHorizontalGroup(

layout.createParallelGroup(javax.swing.GroupLayout.Alignment. LEADING)
.addGroup(layout.createSequentialGroup()

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADI
NG)

.addGroup(layout.createSequentialGroup()
.addGap(48, 48, 48)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment. TRAILI
NG)

.addGroup(layout.createSequential Group()



63

.addComponent(jLabel3,
javax.swing.GroupLayout.PREFERRED_SIZE, 467,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addGap(78, 78, 78))

.addComponent(jLabel4,
javax.swing.GroupLayout.PREFERRED_SIZE, 606,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addGroup(layout.createSequentialGroup()

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADI
NG)

.addComponent(jLabel6,
javax.swing.GroupLayout.PREFERRED_SIZE, 358,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(jLabel5,
javax.swing.GroupLayout.PREFERRED_SIZE, 367,

javax.swing.GroupLayout.PREFERRED_SIZE))
.addGap(135, 135, 135))
.addGroup(layout.createSequentialGroup()

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADI
NG)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADI
NG, false)

.addComponent(jLabel7,
javax.swing.GroupLayout. DEFAULT _SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE, Short MAX_VALUE)



64

.addComponent(jLabel2,
javax.swing.GroupLayout.PREFERRED_SIZE, 211,
javax.swing.GroupLayout.PREFERRED_SIZE))

.addGroup(javax.swing.GroupLayout.Alignment. TRAILING,
layout.createSequential Group()

.addGap(2, 2, 2)

.addComponent(jLabell,
javax.swing.GroupLayout.PREFERRED_SIZE, 2009,
javax.swing.GroupLayout.PREFERRED_SIZE)))

.addGap(18, 18, 18)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout. Alignment.LEADI
NG, false)

.addComponent(number4,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout. DEFAULT _SIZE, Short. MAX_ VALUE)

.addComponent(number2,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE, Short. MAX_ VALUE)

.addComponent(numberl,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout. DEFAULT _SIZE, Short. MAX_ VALUE))

.addGap(178, 178, 178)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADI
NG, false)
.addGroup(layout.createSequential Group()



65

.addComponent(jLabel10,
javax.swing.GroupLayout.PREFERRED_SIZE, 204,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. UNRELATED)
.addComponent(number?7,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE, Short. MAX_VALUE))
.addGroup(layout.createSequential Group()

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout. Alignment.LEADI
NG)

.addComponent(jLabel8,
javax.swing.GroupLayout.PREFERRED_SIZE, 211,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(jLabel9,
javax.swing.GroupLayout.PREFERRED_SIZE, 209,
javax.swing.GroupLayout.PREFERRED_SIZE))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. RELATED)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADI
NG)
.addComponent(number6,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE, Short. MAX_ VALUE)
.addComponent(number>,
javax.swing.GroupLayout. DEFAULT _SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE, Short MAX_VALUE)))))))



66

.addGroup(layout.createSequential Group()
.addContainerGap()

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment. TRAILI
NG)
.addGroup(layout.createSequentialGroup()
.addComponent(resultButton,
javax.swing.GroupLayout.PREFERRED_SIZE, 52,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. RELATED)
.addComponent(numbers3,
javax.swing.GroupLayout.PREFERRED_SIZE, 298,
javax.swing.GroupLayout.PREFERRED_SIZE))
.addGroup(layout.createSequential Group()

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment. TRAILI

NG, false)
.addComponent(sumButton,

javax.swing.GroupLayout. DEFAULT_SIZE,

javax.swing.GroupLayout. DEFAULT_SIZE, Short MAX_ VALUE)
.addComponent(log,

javax.swing.GroupLayout. DEFAULT_SIZE,

javax.swing.GroupLayout. DEFAULT_SIZE, Short. MAX_VALUE))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. UNRELATED)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment. LEADI
NG, false)



67

.addComponent(subtractButton,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE, Short MAX_ VALUE)

.addComponent(abs,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE, Short. MAX_VALUE))

.addGap(18, 18, 18)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADI
NG, false)
.addComponent(multiplyButton,
javax.swing.GroupLayout. DEFAULT _SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE, Short MAX_ VALUE)
.addComponent(greater_than,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE, Short. MAX_VALUE))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. UNRELATED)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADI
NG, false)

.addComponent(dividingButton,
javax.swing.GroupLayout. DEFAULT _SIZE,
javax.swing.GroupLayout. DEFAULT _SIZE, Short. MAX_VALUE)

.addComponent(less_than,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE, Short MAX_ VALUE))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. UNRELATED)



68

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADI
NG)

.addGroup(javax.swing.GroupLayout.Alignment. TRAILING,
layout.createSequential Group()

.addComponent(sqrt,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. UNRELATED)
.addComponent(asin,

javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout. DEFAULT_SIZE,

javax.swing.GroupLayout.PREFERRED_SIZE)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. UNRELATED))
.addGroup(layout.createSequential Group()
.addComponent(averageButton,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. UNRELATED)
.addComponent(cos,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT _SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)



69

.addGap(10, 10, 10)))

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout. Alignment. TRAILI
NG, false)
.addComponent(sin,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout. DEFAULT _SIZE, Short. MAX_ VALUE)
.addComponent(acos,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE, Short. MAX_VALUE))))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. RELATED)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment. LEADI
NG, false)
.addGroup(layout.createSequential Group()
.addComponent(atan,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. RELATED)
.addComponent(to_Degrees,

javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout. DEFAULT_SIZE,

javax.swing.GroupLayout.PREFERRED_SIZE))

.addGroup(layout.createSequential Group()

.addComponent(tan,

javax.swing.GroupLayout.PREFERRED_SIZE,



70

javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. UNRELATED)
.addComponent(PI,

javax.swing.GroupLayout. DEFAULT_SIZE,

javax.swing.GroupLayout. DEFAULT_SIZE, Short. MAX_VALUE)))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. UNRELATED)

.addComponent(to_Radians,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT _SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE))

.addGroup(layout.createSequential Group()

.addGap(275, 275, 275)

.addComponent(claerButton,
javax.swing.GroupLayout.PREFERRED_SIZE, 380,
javax.swing.GroupLayout.PREFERRED_SIZE)))

.addContainerGap(19, Short MAX_VALUE))
);

layout.setVertical Group(

layout.createParallelGroup(javax.swing.GroupLayout.Alignment. LEADING)
.addGroup(layout.createSequentialGroup()
.addGap(6, 6, 6)
.addComponent(jLabel3,
javax.swing.GroupLayout.PREFERRED_SIZE, 36,
javax.swing.GroupLayout.PREFERRED_SIZE)



71

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. RELATED)
.addComponent(jLabel4)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. UNRELATED)
.addComponent(jLabel6)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. RELATED,
javax.swing.GroupLayout. DEFAULT _SIZE, Short. MAX_ VALUE)
.addComponent(jLabel5)
.addGap(22, 22, 22)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout. Alignment. TRAILI
NG)
.addGroup(layout.createSequential Group()

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELI
NE)

.addComponent(jLabel8,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(numberb,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)



72

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment. BASELI
NE)

.addComponent(jLabel9,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(number®6,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. RELATED)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELI
NE)

.addComponent(jLabel10,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(number?7,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT _SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)))

.addGroup(layout.createSequentialGroup()

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELI
NE)



73

.addComponent(jLabell,
javax.swing.GroupLayout.PREFERRED_SIZE, 29,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(numberl,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. RELATED)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment. BASELI
NE)

.addComponent(jLabel2,
javax.swing.GroupLayout.PREFERRED_SIZE, 29,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(number2,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. RELATED)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment. BASELI
NE)

.addComponent(jLabel7,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT _SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)



74

.addComponent(number4,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED _SIZE))))

.addGap(28, 28, 28)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADI
NG, false)
.addGroup(layout.createSequential Group()

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment. BASELI
NE)

.addComponent(sumButton,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(subtractButton,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(multiplyButton,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT _SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(dividingButton,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)



.addComponent(averageButton,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(cos,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(sin,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(tan,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(PI,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. UNRELATED)

75

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELI

NE)

.addComponent(log,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT _SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)



.addComponent(abs,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(greater_than,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(less_than,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(sqrt,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(asin,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(acos,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT _SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(atan,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT _SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

76



77

.addComponent(to_Degrees,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)))

.addComponent(to_Radians,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout. DEFAULT _SIZE, Short. MAX_ VALUE))

.addGap(18, 18, 18)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment. BASELI
NE)

.addComponent(number3,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(resultButton,
javax.swing.GroupLayout.PREFERRED_SIZE, 22,
javax.swing.GroupLayout.PREFERRED_SIZE))

.addGap(18, 18, 18)
.addComponent(claerButton)
.addGap(19, 19, 19))

pack();
Y/ <leditor-fold>//GEN-END:initComponents

private void numberlActionPerformed(java.awt.event.ActionEvent evt)
{//IGEN-FIRST:event_numberlActionPerformed
// TODO add your handling code here:



78

HIGEN-LAST:event_numberlActionPerformed

private void sumButtonActionPerformed(java.awt.event.ActionEvent evt)
{//IGEN-FIRST:event_sumButtonActionPerformed

double[] a = new double[6];

a[0] = Double.parseDouble(numberl.getText());
a[1] = Double.parseDouble(number2.getText());
a[2] = Double.parseDouble(number4.getText());
a[3] = Double.parseDouble(number5.getText());
a[4] = Double.parseDouble(number6.getText());
a[5] = Double.parseDouble(number7.getText());

Double sum = a[0] + a[1] + a[2] + a[3] + a[4] + a[5];

number3.setText("" + sum);

claerButton.setEnabled(true);

HIGEN-LAST:event_sumButtonActionPerformed

private void subtractButtonActionPerformed(java.awt.event.ActionEvent

evt) {//GEN-FIRST:event_subtractButtonActionPerformed

double[] a = new double[6];

a[0] = Double.parseDouble(numberl.getText());

a[1] = Double.parseDouble(number2.getText());

a[2] = Double.parseDouble(number4.getText());

a[3] = Double.parseDouble(number5.getText());

a[4] = Double.parseDouble(number6.getText());

a[5] = Double.parseDouble(number7.getText());

Double subtract = a[0] - a[1] - a[2] - a[3] - a[4] - a[5];



79

number3.setText("" + subtract);

claerButton.setEnabled(true);

HIGEN-LAST:event_subtractButtonActionPerformed

private void multiplyButtonActionPerformed(java.awt.event.ActionEvent

evt) {//{GEN-FIRST:event_multiplyButtonActionPerformed

double[] a = new double[6];

a[0] = Double.parseDouble(numberl.getText());

a[1] = Double.parseDouble(number2.getText());

a[2] = Double.parseDouble(number4.getText());

a[3] = Double.parseDouble(number5.getText());

a[4] = Double.parseDouble(number6.getText());

a[5] = Double.parseDouble(number7.getText());

Double multiply = a[0] * a[1] * a[2] * a[3] * a[4] * a[5];

number3.setText("" + multiply);

claerButton.setEnabled(true);

HIGEN-LAST:event_multiplyButtonActionPerformed

private void dividingButtonActionPerformed(java.awt.event.ActionEvent

evt) {//GEN-FIRST:event_dividingButtonActionPerformed

double[] a = new double[6];

a[0] = Double.parseDouble(numberl.getText());

a[1] = Double.parseDouble(number2.getText());

a[2] = Double.parseDouble(number4.getText());

a[3] = Double.parseDouble(number5.getText());

a[4] = Double.parseDouble(number6.getText());



80

a[5] = Double.parseDouble(number7.getText());

Double dividing = a[0] / a[1] / a[2] / a[3] / a[4] / a[5];

number3.setText("" + dividing);

claerButton.setEnabled(true);
HIGEN-LAST:event_dividingButtonActionPerformed

private void averageButtonActionPerformed(java.awt.event.ActionEvent

evt) {//{GEN-FIRST:event_averageButtonActionPerformed

double[] a = new double[6];

a[0] = Double.parseDouble(numberl.getText());

a[1] = Double.parseDouble(number2.getText());

a[2] = Double.parseDouble(number4.getText());

a[3] = Double.parseDouble(number5.getText());

a[4] = Double.parseDouble(number6.getText());

a[5] = Double.parseDouble(number7.getText());

Double average = (a[0] + a[1] + a[2] + a[3] + a[4] + a[5]) / 2;

number3.setText("" + average);

claerButton.setEnabled(true);

}IGEN-LAST:event_averageButtonActionPerformed

private void claerButtonActionPerformed(java.awt.event.ActionEvent evt)
{/IGEN-FIRST:event_claerButtonActionPerformed
numberl.setText("");
number2.setText("");
number3.setText("");

number4.setText("");



81

number5.setText("");
number6.setText("");
number7.setText("");

claerButton.setEnabled(false);

HIGEN-LAST:event_claerButtonActionPerformed

private void number2ActionPerformed(java.awt.event.ActionEvent evt)
{/IGEN-FIRST:event_number2ActionPerformed
// TODO add your handling code here:
HIGEN-LAST:event_number2ActionPerformed

private void number4ActionPerformed(java.awt.event.ActionEvent evt)
{//IGEN-FIRST:event_number4ActionPerformed
// TODO add your handling code here:
HIGEN-LAST:event_number4ActionPerformed

private void number3ActionPerformed(java.awt.event.ActionEvent evt)
{/IGEN-FIRST:event_number3ActionPerformed
// TODO add your handling code here:
HIGEN-LAST:event_number3ActionPerformed

private void cosActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_cosActionPerformed
double[] a = new double[6];
a[0] = Double.parseDouble(numberl.getText());

Double cos = Math.cos(a[0]);

number3.setText("" + cos);



82

claerButton.setEnabled(true);

HIGEN-LAST:event_cosActionPerformed

private void sinActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_sinActionPerformed

double[] a = new double[6];
a[0] = Double.parseDouble(numberl.getText());

Double sin = Math.sin(a[0]);
number3.setText(*"" + sin);

claerButton.setEnabled(true);

HIGEN-LAST:event_sinActionPerformed

private void tanActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_tanActionPerformed

double[] a = new double[6];
a[0] = Double.parseDouble(numberl.getText());

Double tan = Math.tan(a[0]);

number3.setText("" + tan);

claerButton.setEnabled(true);

HIGEN-LAST:event_tanActionPerformed

private void PlActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_PlActionPerformed



83

double[] a = new double[6];
Double Pl = Math.PlI;

number3.setText("" + PI);

claerButton.setEnabled(true);

HIGEN-LAST:event_PlActionPerformed

private void logActionPerformed(java.awt.event.ActionEvent evt) {//GEN-

FIRST:event_logActionPerformed
double[] a = new double[6];
a[0] = Double.parseDouble(numberl.getText());
Double log = Math.log10(a[0]);
number3.setText("" + log);
claerButton.setEnabled(true);

HIGEN-LAST:event_logActionPerformed

private void absActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_absActionPerformed

double[] a = new double[6];
a[0] = Double.parseDouble(numberl.getText());

Double abs = Math.abs(a[0]);

number3.setText("" + abs);



84

claerButton.setEnabled(true);

HIGEN-LAST:event_absActionPerformed

private void greater_thanActionPerformed(java.awt.event.ActionEvent evt)
{/IGEN-FIRST:event_greater_thanActionPerformed

double[] a = new double[6];

a[0] = Double.parseDouble(numberl.getText());
a[1] = Double.parseDouble(number2.getText());
a[2] = Double.parseDouble(number4.getText());
a[3] = Double.parseDouble(number5.getText());
a[4] = Double.parseDouble(number6.getText());
a[5] = Double.parseDouble(number7.getText());

Double greater_thanl = Math.max(a[0], a[1]);

Double greater_than2 = Math.max(greater_than1, a[2]);
Double greater_than3 = Math.max(greater_than2, a[3]);
Double greater _than4 = Math.max(greater_than3, a[4]);
Double greater_than5 = Math.max(greater_than4, a[5]);

number3.setText("" + greater_than5);

claerButton.setEnabled(true);

HIGEN-LAST:event_greater_thanActionPerformed

private void sqrtActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_sqrtActionPerformed
double[] a = new double[6];
a[0] = Double.parseDouble(numberl.getText());



85

Double sqr = Math.sgrt(a[0]);
number3.setText("" + sqr);

claerButton.setEnabled(true);

HIGEN-LAST:event_sqrtActionPerformed

private void asinActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_asinActionPerformed

double[] a = new double[6];
a[0] = Double.parseDouble(numberl.getText());

Double asin = Math.asin(a[0]);
number3.setText("" + asin);

claerButton.setEnabled(true);

HIGEN-LAST:event_asinActionPerformed

private void acosActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_acosActionPerformed

double[] a = new double[6];

a[0] = Double.parseDouble(numberl.getText());
Double acos = Math.acos(a[0]);
number3.setText(*"" + acos);

claerButton.setEnabled(true);

HIGEN-LAST:event_acosActionPerformed



86

private void atanActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_atanActionPerformed
double[] a = new double[6];
a[0] = Double.parseDouble(numberl.getText());
Double acos = Math.atan(a[0]);
number3.setText(*"" + acos);

claerButton.setEnabled(true);

}IGEN-LAST:event_atanActionPerformed

private void to_DegreesActionPerformed(java.awt.event.ActionEvent evt)
{//IGEN-FIRST:event_to_DegreesActionPerformed
double[] a = new double[6];
a[0] = Double.parseDouble(numberl.getText());
Double to_Degrees = Math.toDegrees(a[0]);
number3.setText("" + to_Degrees);

claerButton.setEnabled(true);

HIGEN-LAST:event_to_DegreesActionPerformed

private void to_RadiansActionPerformed(java.awt.event.ActionEvent evt)
{//IGEN-FIRST:event_to_RadiansActionPerformed

double[] a = new double[6];

a[0] = Double.parseDouble(numberl.getText());
Double to_Radians = Math.toRadians(a[0]);
number3.setText("" + to_Radians);

claerButton.setEnabled(true);



87

HIGEN-LAST:event to_RadiansActionPerformed

private void less_thanActionPerformed(java.awt.event.ActionEvent evt)
{/IGEN-FIRST:event_less_thanActionPerformed

double[] a = new double[6];

a[0] = Double.parseDouble(numberl.getText());
a[1] = Double.parseDouble(number2.getText());
a[2] = Double.parseDouble(number4.getText());
a[3] = Double.parseDouble(number5.getText());
a[4] = Double.parseDouble(number6.getText());
a[5] = Double.parseDouble(number7.getText());

Double less_thanl = Math.min(a[0], a[1]);

Double less_than2 = Math.min(less_than1l, a[2]);
Double less_than3 = Math.min(less_than2, a[3]);
Double less_than4 = Math.min(less_than3, a[4]);
Double less_than5 = Math.min(less_than4, a[5]);

number3.setText("" + less_than5);

claerButton.setEnabled(true);

HIGEN-LAST:event less_thanActionPerformed

[H*
* @param args the command line arguments
*/
public static void main(String args[]) {

[* Set the Nimbus look and feel */



88

//<editor-fold defaultstate="collapsed" desc=" Look and feel setting code
(optional) ">
/* If Nimbus (introduced in Java SE 6) is not available, stay with the
default look and feel.
* For details see
http://download.oracle.com/javase/tutorial/uiswing/lookandfeel/plaf.html
*/
try {
for (Javax.swing.UIManager.LookAndFeelInfo info
javax.swing.UlManager.getinstalledLookAndFeels()) {
iIf ("Nimbus".equals(info.getName())) {
javax.swing.UIManager.setLookAndFeel(info.getClassName());
break;

¥
} catch (ClassNotFoundException ex) {

java.util.logging.Logger.getLogger(NewJFramel.class.getName()).log(java.util.loggi
ng.Level. SEVERE, null, ex);

} catch (InstantiationException ex) {

java.util.logging.Logger.getLogger(NewJFramel.class.getName()).log(java.util.loggi
ng.Level. SEVERE, null, ex);

} catch (Illegal AccessException ex) {

java.util.logging.Logger.getLogger(NewJFramel.class.getName()).log(java.util.loggi
ng.Level. SEVERE, null, ex);

} catch (javax.swing.UnsupportedLookAndFeelException ex) {



89

java.util.logging.Logger.getLogger(NewJFramel.class.getName()).log(java.util.loggi
ng.Level. SEVERE, null, ex);

}
/I</editor-fold>

/* Create and display the form */
java.awt.EventQueue.invokeLater(new Runnable() {
public void run() {

new NewJFramel().setVisible(true);

H;

Il Variables declaration - do not modify//GEN-BEGIN:variables
private javax.swing.JButton log;

private javax.swing.JButton PlI;

private javax.swing.JButton abs;

private javax.swing.JButton acos;

private javax.swing.JButton asin;

private javax.swing.JButton atan;

private javax.swing.JButton averageButton;
private javax.swing.JButton claerButton;
private javax.swing.JButton cos;

private javax.swing.JButton dividingButton;
private javax.swing.JButton greater_than;
private javax.swing.JLabel jLabell;

private javax.swing.JLabel jLabell10;

private javax.swing.JLabel jLabel2;



private javax.swing.JLabel jLabel3;

private javax.swing.JLabel jLabel4;

private javax.swing.JLabel jLabel5;

private javax.swing.JLabel jLabel6;

private javax.swing.JLabel jLabel7;

private javax.swing.JLabel jLabel8;

private javax.swing.JLabel jLabel9;

private javax.swing.JButton less_than;
private javax.swing.JButton multiplyButton;
private javax.swing.JTextField numberl,
private javax.swing.JTextField number2;
private javax.swing.JTextField number3;
private javax.swing.JTextField number4;
private javax.swing.JTextField number5;
private javax.swing.JTextField number®6;
private javax.swing.JTextField number7,
private javax.swing.JLabel resultButton;
private javax.swing.JButton sin;

private javax.swing.JButton sqrt;

private javax.swing.JButton subtractButton;
private javax.swing.JButton sumButton;
private javax.swing.JButton tan;

private javax.swing.JButton to_Degrees;
private javax.swing.JButton to_Radians;

// End of variables declaration/GEN-END:variables

90



